
A Practical Tile Size Selection Model
for Affine Loop Nests

Kumudha Narasmimhan 1 Aravind Acharya 2

Abhinav Baid Uday Bondhugula

Computer Science and Automation
Indian Institute of Science

Bengaluru, India

1Codeplay Software Ltd, Edinburgh 2NVIDIA, Redmond

International Conference on Supercomputing 2021

Practical Tile Size Selection Model 1/23

Overview

1 Motivation

2 Tile Size Selection Model

3 Optimizations

4 Results

5 Conclusion

Practical Tile Size Selection Model 2/23

Loop tiling

f o r (i=1; i<T; i++)

f o r (j=1; j<N; j++)

A[i][j] = 0.125 * A[i-1][j-1] +

0.500 * A[i-1][j] +

0.125 * A[i-1][j+1];

Heat-1d kernel

Iteration space. S(i, j) → (i/2, (i + j)/2, i, i + j).

Loop tiling improves performance by exploiting reuse in a loop nest.

Small tile size =⇒ Under-utilization. Large tile size =⇒ Lesser parallelism.

Practical Tile Size Selection Model Motivation 3/23

Loop tiling

f o r (i=1; i<T; i++)

f o r (j=1; j<N; j++)

A[i][j] = 0.125 * A[i-1][j-1] +

0.500 * A[i-1][j] +

0.125 * A[i-1][j+1];

Heat-1d kernel

Iteration space. S(i, j) → (i/2, (i + j)/2, i, i + j).

Loop tiling improves performance by exploiting reuse in a loop nest.

Small tile size =⇒ Under-utilization. Large tile size =⇒ Lesser parallelism.

Practical Tile Size Selection Model Motivation 3/23

Motivation and Objective

Optimizing compilers Pluto and PPCG use default tile sizes and Performance
improvement of 6.4× over default tile sizes in certain cases.

Practical Tile Size Selection Model Motivation 4/23

Motivation and Objective

Optimizing compilers Pluto and PPCG use default tile sizes and Performance
improvement of 6.4× over default tile sizes in certain cases.

Practical Tile Size Selection Model Motivation 4/23

Outline

1 Motivation

2 Tile Size Selection Model

3 Optimizations

4 Results

5 Conclusion

Practical Tile Size Selection Model Tile Size Selection Model 5/23

Tile Size Selection Model

Objectives of the proposed tile size selection model

Work for arbitrary affine access.

Compute tile sizes quickly.

Tile any level in the memory hierarchy.

Consider effects of tiling on parallelism

Note our aim is not to find the optimal tile size but good tile sizes that can be
obtained quickly.

Practical Tile Size Selection Model Tile Size Selection Model 6/23

Tile Size Selection Model: Intuition

Calculate
tile volume

Dimensional
reuse

Construct

reuse

expression

Solve

polynomial

Tiling is profitable when there is simultaneous reuse of data along multiple
dimensions

Larger tile sizes along dimensions with more reuse, utilizes the cache effectively.

Hence, in our model, tile sizes are proportional to reuse along the dimension

Practical Tile Size Selection Model Tile Size Selection Model 7/23

Tile Size Selection Model: Inputs

Calculate
tile volume

Dimensional
reuse

Construct

reuse

expression

Solve

polynomial

Input to the tile size selection model:

cache size (L1 or L2)

datatype of the element stored

NumElementsInCache(C) = cacheSize/elementSize

problem size

number of cores

Used to calculate effective computation, to avoid load imbalance

Practical Tile Size Selection Model Tile Size Selection Model 8/23

Tile Size Selection Model: Inputs

Calculate
tile volume

Dimensional
reuse

Construct

reuse

expression

Solve

polynomial

Input to the tile size selection model:

cache size (L1 or L2)

datatype of the element stored

NumElementsInCache(C) = cacheSize/elementSize

problem size

number of cores

Used to calculate effective computation, to avoid load imbalance

Practical Tile Size Selection Model Tile Size Selection Model 8/23

Tile Size Selection Model: Dimensional Reuse

Calculate
tile volume

Dimensional
reuse

Construct

reuse

expression

Solve

polynomial

Dimensional Reuse along i (γi)
= Number of access which have temporal reuse along i

f o r (i n t i = 0 ; i < N; i++)
f o r (i n t j = 0 ; j < N; j++)

f o r (i n t k = 0 ; k < N; k++)
C [i] [j] += A[i] [k] ∗ B[k] [j] ;

Reuse along γi = 1, γj = 1 and
γk = 2

Tile size for k will be twice that of
i or j .

Practical Tile Size Selection Model Tile Size Selection Model 9/23

Tile Size Selection Model: Dimensional Reuse

Calculate
tile volume

Dimensional
reuse

Construct

reuse

expression

Solve

polynomial

Dimensional Reuse along i (γi)
= Number of access which have temporal reuse along i

f o r (i n t i = 0 ; i < N; i++)
f o r (i n t j = 0 ; j < N; j++)

f o r (i n t k = 0 ; k < N; k++)
C [i] [j] += A[i] [k] ∗ B[k] [j] ;

Reuse along γi = 1, γj = 1 and
γk = 2

Tile size for k will be twice that of
i or j .

Practical Tile Size Selection Model Tile Size Selection Model 9/23

Tile Size Selection Model: Reuse expression

Calculate
tile volume

Dimensional
reuse

Construct

reuse

expression

Solve

polynomial

The tile volume should fit in the cache.

t1 ∗ t2 + t2 ∗ t3 + t3 ∗ t1 = C .

In our model, tile sizes are proportional to dimensional reuse. Therefore,

ti = γi × τ , for every dimension i .

(γi ∗ γj + γj ∗ γk + γk ∗ γi) ∗ τ2 = C .

Practical Tile Size Selection Model Tile Size Selection Model 10/23

Tile Size Selection Model: Reuse expression

Calculate
tile volume

Dimensional
reuse

Construct

reuse

expression

Solve

polynomial

The tile volume should fit in the cache.

t1 ∗ t2 + t2 ∗ t3 + t3 ∗ t1 = C .

In our model, tile sizes are proportional to dimensional reuse. Therefore,

ti = γi × τ , for every dimension i .

(γi ∗ γj + γj ∗ γk + γk ∗ γi) ∗ τ2 = C .

Practical Tile Size Selection Model Tile Size Selection Model 10/23

Tile Size Selection Model: Reuse expression

Calculate
tile volume

Dimensional
reuse

Construct

reuse

expression

Solve

polynomial

The tile volume should fit in the cache.

t1 ∗ t2 + t2 ∗ t3 + t3 ∗ t1 = C .

In our model, tile sizes are proportional to dimensional reuse. Therefore,

ti = γi × τ , for every dimension i .

(γi ∗ γj + γj ∗ γk + γk ∗ γi) ∗ τ2 = C .

Practical Tile Size Selection Model Tile Size Selection Model 10/23

Tile Size Selection Model: Reuse expression

Calculate
tile Volume

Dimensional
reuse

Construct

reuse

expression

Solve

polynomial

(γi ∗ γj + γj ∗ γk + γk ∗ γi) ∗ τ2 = C .

(0.5 ∗ 0.5 + 0.5 ∗ 1.0 + 1.0 ∗ 0.5) ∗ τ2 = 4096.

=⇒ 1.25 ∗ τ2 − 4096 = 0.

Solving for τ , tile sizes can be computed as, t1 = 28, t2 = 28 and t3 = 57.

Practical Tile Size Selection Model Tile Size Selection Model 11/23

Tile Size Selection Model: Reuse expression

Calculate
tile Volume

Dimensional
reuse

Construct

reuse

expression

Solve

polynomial

(γi ∗ γj + γj ∗ γk + γk ∗ γi) ∗ τ2 = C .

(0.5 ∗ 0.5 + 0.5 ∗ 1.0 + 1.0 ∗ 0.5) ∗ τ2 = 4096.

=⇒ 1.25 ∗ τ2 − 4096 = 0.

Solving for τ , tile sizes can be computed as, t1 = 28, t2 = 28 and t3 = 57.

Practical Tile Size Selection Model Tile Size Selection Model 11/23

Tile Size Selection Model: Reuse Expression

Reuse Expressions for arbitrary affine accesses

memory no. of distinct accesses no. of distinct accesses
access w.r.t tile size w.r.t dimensional reuse

a[i] τi γi ∗ τ
a[α ∗ i] τi γi ∗ τ
a[i + j] τi + τj (γi + γj) ∗ τ
a[i − j] τi + τj (γi + γj) ∗ τ
a[i][j] τi ∗ τj (γi ∗ γj) ∗ τ2

Practical Tile Size Selection Model Tile Size Selection Model 12/23

Outline

1 Motivation

2 Tile Size Selection Model

3 Optimizations

4 Results

5 Conclusion

Practical Tile Size Selection Model Optimizations 13/23

Intra-tile optimization: Matmul Example

f o r (i n t i = 0 ; i < N; i++)
f o r (i n t j = 0 ; j < N; j++)

f o r (i n t k = 0 ; k < N; k++)
C [i] [j] += A[i] [k] ∗ B[k] [j] ;

dim s t v a score

i 0 1 false 4 -44
j 3 1 true 4 18
k 1 2 false 4 -6

loop k carries a dependence =⇒ Not parallel =⇒ Not vectorizable

loop i has non contiguous accesses for arrays C and A =⇒ Not vectorizable

score = score + (2 ∗ s) + (4 ∗ t) + (8 ∗ v)− (16 ∗ (a− s − t))

loop j has the highest score and is selected as the inner-most dimension

Practical Tile Size Selection Model Optimizations 14/23

Intra-tile optimization: Matmul Example

f o r (i n t i = 0 ; i < N; i++)
f o r (i n t j = 0 ; j < N; j++)

f o r (i n t k = 0 ; k < N; k++)
C [i] [j] += A[i] [k] ∗ B[k] [j] ;

dim s t v a score

i 0 1 false 4 -44
j 3 1 true 4 18
k 1 2 false 4 -6

loop k carries a dependence =⇒ Not parallel =⇒ Not vectorizable

loop i has non contiguous accesses for arrays C and A =⇒ Not vectorizable

score = score + (2 ∗ s) + (4 ∗ t) + (8 ∗ v)− (16 ∗ (a− s − t))

loop j has the highest score and is selected as the inner-most dimension

Practical Tile Size Selection Model Optimizations 14/23

Intra-tile optimization: Matmul Example

f o r (i n t i = 0 ; i < N; i++)
f o r (i n t j = 0 ; j < N; j++)

f o r (i n t k = 0 ; k < N; k++)
C [i] [j] += A[i] [k] ∗ B[k] [j] ;

dim s t v a score

i 0 1 false 4 -44
j 3 1 true 4 18
k 1 2 false 4 -6

loop k carries a dependence =⇒ Not parallel =⇒ Not vectorizable

loop i has non contiguous accesses for arrays C and A =⇒ Not vectorizable

score = score + (2 ∗ s) + (4 ∗ t) + (8 ∗ v)− (16 ∗ (a− s − t))

loop j has the highest score and is selected as the inner-most dimension

Practical Tile Size Selection Model Optimizations 14/23

Intra-tile optimization: Matmul Example

f o r (i n t i = 0 ; i < N; i++)
f o r (i n t j = 0 ; j < N; j++)

f o r (i n t k = 0 ; k < N; k++)
C [i] [j] += A[i] [k] ∗ B[k] [j] ;

dim s t v a score

i 0 1 false 4 -44
j 3 1 true 4 18
k 1 2 false 4 -6

loop k carries a dependence =⇒ Not parallel =⇒ Not vectorizable

loop i has non contiguous accesses for arrays C and A =⇒ Not vectorizable

score = score + (2 ∗ s) + (4 ∗ t) + (8 ∗ v)− (16 ∗ (a− s − t))

loop j has the highest score and is selected as the inner-most dimension

Practical Tile Size Selection Model Optimizations 14/23

Tile Size Selection Model

Assigns a constant large tile size for the vectorizable dimension

(γi + γk) ∗ 256 ∗ τ + (γk ∗ γi) ∗ τ2 = C .

(0.5 + 1.0)256 ∗ τ + (1.0 ∗ 0.5) ∗ τ2 = (4096).

=⇒ 0.5 ∗ τ2 + 384 ∗ τ − 4096 = 0.

Practical Tile Size Selection Model Optimizations 15/23

Implementation

Fusion
+

Tiling

Intra-tile
opt +
tile size
determi-
nation

Initial

schedule

Function
graph
Static
bounds
check

DSL
Spec

Idiom
recogni-
tion &
library

mapping

Storage
opti-

mization

Codegen

Opt C++ code

Modified compiler flow in PolyMage.

Dependence

analysis

Polyhedral

representation

C Source

Auto

transformation

Loop

tiling

Tile size

calculation

Intra-tile

optimization

AST

generation

Unroll
and jam

optimzation

Optimized

C code

CLooG

Modified compiler flow in Pluto.

Practical Tile Size Selection Model Optimizations 16/23

Outline

1 Motivation

2 Tile Size Selection Model

3 Optimizations

4 Results

5 Conclusion

Practical Tile Size Selection Model Results 17/23

Experimental Setup

Benchmarks

26 benchmarks from PolyBench.

2 Digital Signal Processing filters.

Image Processing benchmarks.

Experimental setup

Processors Intel(R) Xeon(R) Silver 4110 CPU @ 2.10 GHz
Cores 16 (8 per socket)
Private caches 32 KB L1 cache, 1 MB L2 cache
Memory 256 GB DDR4

Matlab version 9.9.0.1524771 (R2020b)
Scipy version 1.0.0

Compiler Intel C/C++ (icc/icpc) 19.1.2.254
Compiler flags -O3 -xhost -qopenmp -fma -ipo

Practical Tile Size Selection Model Results 18/23

PolyBench Results

gemm symm 3mm doitgen geomean
0

1

2

3

4

5

6

7

PolyBench (medium)

S
p
ee
d
u
p

PolyMage

PolyMage-tss

Geomean speedup of 1.53× over
PolyMage

gemm symm 3mm doitgen geomean
0

1

2

3

4

PolyBench (extralarge)

S
p
ee
d
u
p

PolyMage

PolyMage-tss

Geomean speedup of 1.24× over
PolyMage

Max tile size selection time - 13ms.

Practical Tile Size Selection Model Results 19/23

PolyBench Results

gemm symm 3mm doitgen geomean
0

1

2

3

4

5

6

7

PolyBench (medium)

S
p
ee
d
u
p

PolyMage

PolyMage-tss

Geomean speedup of 1.53× over
PolyMage

gemm symm 3mm doitgen geomean
0

1

2

3

4

PolyBench (extralarge)

S
p
ee
d
u
p

PolyMage

PolyMage-tss

Geomean speedup of 1.24× over
PolyMage

Max tile size selection time - 13ms.

Practical Tile Size Selection Model Results 19/23

PolyBench Results

gemm symm 3mm doitgen geomean
0

1

2

3

4

5

6

7

PolyBench (medium)

S
p
ee
d
u
p

PolyMage

PolyMage-tss

Geomean speedup of 1.53× over
PolyMage

gemm symm 3mm doitgen geomean
0

1

2

3

4

PolyBench (extralarge)

S
p
ee
d
u
p

PolyMage

PolyMage-tss

Geomean speedup of 1.24× over
PolyMage

Max tile size selection time - 13ms.

Practical Tile Size Selection Model Results 19/23

PolyBench Results

2mm 3mm atax bicg gemm gesummv heat-3d lu mvt trmm geomean
0

0.2

0.4

0.6

0.8

1

1.2

1.4

PolyBench (extralarge)

S
p
ee
d
u
p

PPCG

Pluto

Pluto-tss

Geomean speedup of 1.04× over Pluto.
Max tile size selection time - 2ms.

Practical Tile Size Selection Model Results 20/23

DSP Benchmark Results

vuvuzela unwanted spectral geomean
0

1

2

3

4

5

Filters

S
p
ee
d
u
p

Scipy

Matlab

PolyMage

PolyMage-tss Upsampling operations are
mapped to FFTs.

Geomean speedup of 11.8× over
SciPy and 2.2× over Matlab.

Max tile size selection time -
35ms.

Practical Tile Size Selection Model Results 21/23

Conclusion

PolyBench

Mean speedup of 1.04× (max 1.3×) over Pluto for the entire PolyBench.
Mean speedup of 1.24× (max 3.65×) for linear algebra benchmarks.

Digital Signal Processing

Geomean speedup of 11.8× over Intels Scipy and 2.2× over MATLAB

Image Processing benchmarks

We get similar tile sizes as Jangda et. al. [PPoPP’18]

Code available - https://github.com/bondhugula/pluto

Practical Tile Size Selection Model Results 22/23

Conclusion

Proposed a simple, fast, and practical approach for tile size selection

Model-driven and gives good performance improvement - frees existing tools
from using hardcoded sizes.

Geomean speedup of 1.24× over PolyMage, 1.04× over Pluto, and 5.11× over
PPCG.
Geomean speedup of 11.8× over Intels Scipy and 2.2× over MATLAB for DSP
filters

Neglible compile time overhead of model makes it suitable for incorporation in
a general-purpose compiler infrastructure like MLIR.

The model can be easily extended to multi-level tiling

We would like to thank the reviewers for their feedback that helped improve the paper
significantly.

Practical Tile Size Selection Model Conclusion 23/23

Conclusion

Proposed a simple, fast, and practical approach for tile size selection

Model-driven and gives good performance improvement - frees existing tools
from using hardcoded sizes.

Geomean speedup of 1.24× over PolyMage, 1.04× over Pluto, and 5.11× over
PPCG.
Geomean speedup of 11.8× over Intels Scipy and 2.2× over MATLAB for DSP
filters

Neglible compile time overhead of model makes it suitable for incorporation in
a general-purpose compiler infrastructure like MLIR.

The model can be easily extended to multi-level tiling

We would like to thank the reviewers for their feedback that helped improve the paper
significantly.

Practical Tile Size Selection Model Conclusion 23/23

	Motivation
	Tile Size Selection Model
	Optimizations
	Results
	Conclusion

