A Practical Tile Size Selection Model for Affine Loop Nests

Kumudha Narasmimhan ¹ Aravind Acharya ² Abhinav Baid Uday Bondhugula

Computer Science and Automation Indian Institute of Science Bengaluru, India

¹Codeplay Software Ltd, Edinburgh ²NVIDIA, Redmond

International Conference on Supercomputing 2021

< □ > < 同 >

2 Tile Size Selection Model

Optimizations

- * ロ * * 個 * * 画 * * 画 * - 画 - のへの

Loop tiling

Iteration space.

 $S(i,j) \to (i/2, (i+j)/2, i, i+j).$

<ロト <問ト < 目と < 目と

Loop tiling improves performance by exploiting reuse in a loop nest.

3

Loop tiling

Iteration space.

Loop tiling improves performance by exploiting reuse in a loop nest.

Small tile size \implies Under-utilization.

Motivation and Objective

Ξ.

<ロト <回ト < 回ト < 回ト :

Motivation and Objective

Optimizing compilers Pluto and PPCG use default tile sizes and Performance improvement of $6.4 \times$ over default tile sizes in certain cases.

3

<ロト <問ト < 目と < 目と

Motivation

2 Tile Size Selection Model

3 Optimizations

5 Conclusion

▲日▼▲□▼▲田▼▲田▼ 回 ろん⊙

Objectives of the proposed tile size selection model

- Work for arbitrary affine access.
- Compute tile sizes **quickly**.
- Tile any level in the memory hierarchy.
- Consider effects of tiling on parallelism
- Note our aim is not to find the optimal tile size but **good tile sizes** that can be obtained **quickly**.

- Tiling is profitable when there is simultaneous reuse of data along multiple dimensions
- Larger tile sizes along dimensions with more reuse, utilizes the cache effectively.
- Hence, in our model, tile sizes are proportional to reuse along the dimension

Tile Size Selection Model: Inputs

Input to the tile size selection model:

- cache size (L1 or L2)
- datatype of the element stored
 - NumElementsInCache(C) = cacheSize/elementSize

Input to the tile size selection model:

- cache size (L1 or L2)
- datatype of the element stored
 - NumElementsInCache(C) = cacheSize/elementSize
- problem size
- number of cores
 - Used to calculate effective computation, to avoid load imbalance

Dimensional Reuse along i (γ_i)

= Number of access which have temporal reuse along i

Dimensional Reuse along i (γ_i)

= Number of access which have temporal reuse along i

- Reuse along $\gamma_i = 1$, $\gamma_j = 1$ and $\gamma_k = 2$
- Tile size for k will be twice that of *i* or *j*.

10/23

(三)

10/23

< ∃⇒

 $t_i = \gamma_i \times \tau$, for every dimension *i*.

$$(\gamma_i * \gamma_j + \gamma_j * \gamma_k + \gamma_k * \gamma_i) * \tau^2 = C.$$

< 円

< E > < E >

$$(\gamma_i * \gamma_j + \gamma_j * \gamma_k + \gamma_k * \gamma_i) * \tau^2 = C.$$

$$\begin{array}{l} (0.5*0.5+0.5*1.0+1.0*0.5)*\tau^2 = 4096.\\ \implies 1.25*\tau^2 - 4096 = 0. \end{array}$$

Solving for τ , tile sizes can be computed as, $t_1 = 28$, $t_2 = 28$ and $t_3 = 57$.

Reuse Expressions for arbitrary affine accesses

memory access	no. of distinct accesses w.r.t tile size	no. of distinct accesses w.r.t dimensional reuse
a[i]	$ au_i$	$\gamma_i * \tau$
$a[\alpha * I]$	$ au_i$	$\gamma_i * \tau$
a[1 + J]	$ au_i + au_j$	$(\gamma_i + \gamma_j) * \tau$
a[1 — J]	$ au_i + au_j$	$(\gamma_i + \gamma_j) * \tau_2$
a[1][J]	$ au_i * au_j$	$(\gamma_i * \gamma_j) * \tau^2$

э

< ロ > < 同 > < 回 > < 回 >

Motivation

2 Tile Size Selection Model

Optimizations

5 Conclusion

Practical Tile Size Selection Model

・ロト・西ト・ヨト・ヨー うへぐ

13/23

- loop k carries a dependence \implies Not parallel \implies Not vectorizable
- loop *i* has non contiguous accesses for arrays C and A \implies Not vectorizable

3

イロト イボト イヨト イヨト

- loop k carries a dependence \implies Not parallel \implies Not vectorizable
- loop *i* has non contiguous accesses for arrays C and A \implies Not vectorizable

•
$$score = score + (2 * s) + (4 * t) + (8 * v) - (16 * (a - s - t))$$

3

イロト イボト イヨト イヨト

for (int $i = 0; i < N; i++$)
for (int $j = 0; j < N; j++$)
for(int $k = 0; k < N; k++$)
C[i][j] += A[i][k] * B[k][j]

dim	S	t	v	а	score	
i	0	1	false	4	-44	
j	3	1	true	4	18	
k	1	2	false	4	-6	

- loop k carries a dependence \implies Not parallel \implies Not vectorizable
- loop *i* has non contiguous accesses for arrays C and A \implies Not vectorizable
- score = score + (2 * s) + (4 * t) + (8 * v) (16 * (a s t))

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

for (int $i = 0; i < N; i++$)
for (int $j = 0; j < N; j++$)
for(int $k = 0; k < N; k++$)
C[i][j] += A[i][k] * B[k][j];

dim	S	t	v	а	score	
i	0	1	false	4	-44	
j	3	1	true	4	18	
k	1	2	false	4	-6	

- loop k carries a dependence \implies Not parallel \implies Not vectorizable
- loop *i* has non contiguous accesses for arrays C and A \implies Not vectorizable
- score = score + (2 * s) + (4 * t) + (8 * v) (16 * (a s t))
- loop *j* has the highest score and is selected as the inner-most dimension

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

• Assigns a constant large tile size for the vectorizable dimension

$$(\gamma_i + \gamma_k) * 256 * \tau + (\gamma_k * \gamma_i) * \tau^2 = C.$$

$$(0.5+1.0)256 * \tau + (1.0 * 0.5) * \tau^{2} = (4096).$$
$$\implies 0.5 * \tau^{2} + 384 * \tau - 4096 = 0.$$

3

< □ > < 同 > < 回 > < 回 > < 回 >

Modified compiler flow in PolyMage.

Modified compiler flow in Pluto.

3

<ロト <問ト < 目と < 目と

Motivation

2 Tile Size Selection Model

Optimizations

5 Conclusion

Benchmarks

- 26 benchmarks from PolyBench.
- 2 Digital Signal Processing filters.
- Image Processing benchmarks.

Experimental setup

Processors	Intel(R) Xeon(R) Silver 4110 CPU @ 2.10 GHz
Cores	16 (8 per socket)
Private caches	32 KB L1 cache, 1 MB L2 cache
Memory	256 GB DDR4
Matlab version	9.9.0.1524771 (R2020b)
Scipy version	1.0.0
Compiler	Intel C/C++ (icc/icpc) 19.1.2.254
Compiler flags	-O3 -xhost -qopenmp -fma -ipo

3

Image: A matrix

A B b A B b

Geomean speedup of $1.53\times$ over PolyMage

Geomean speedup of $1.53\times$ over PolyMage

Geomean speedup of $1.24\times$ over PolyMage

19/23

Geomean speedup of $1.53 \times$ over PolyMage Max tile size selection time - 13ms.

Geomean speedup of $1.24\times$ over PolyMage

Geomean speedup of $1.04 \times$ over Pluto. Max tile size selection time - 2ms.

- Upsampling operations are mapped to FFTs.
- Geomean speedup of $11.8 \times$ over SciPy and $2.2 \times$ over Matlab.

< 47 ▶

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

• Max tile size selection time - 35*ms*.

PolyBench

- Mean speedup of $1.04 \times (\max 1.3 \times)$ over Pluto for the entire PolyBench.
- Mean speedup of 1.24× (max 3.65×) for linear algebra benchmarks.
- Digital Signal Processing
 - $\bullet\,$ Geomean speedup of 11.8× over Intels Scipy and 2.2× over MATLAB
- Image Processing benchmarks
 - We get similar tile sizes as Jangda et. al. [PPoPP'18]
- Code available https://github.com/bondhugula/pluto

22/23

Conclusion

- Proposed a simple, fast, and practical approach for tile size selection
- **Model-driven** and gives good performance improvement frees existing tools from using hardcoded sizes.
 - Geomean speedup of $1.24\times$ over PolyMage, $1.04\times$ over Pluto, and $5.11\times$ over PPCG.
 - Geomean speedup of $11.8\times$ over Intels Scipy and $2.2\times$ over MATLAB for DSP filters
- **Neglible compile time overhead** of model makes it suitable for incorporation in a general-purpose compiler infrastructure like MLIR.
- The model can be easily extended to multi-level tiling

< □ > < □ > < □ > < □ > < □ > < □ >

Conclusion

- Proposed a simple, fast, and practical approach for tile size selection
- **Model-driven** and gives good performance improvement frees existing tools from using hardcoded sizes.
 - Geomean speedup of $1.24\times$ over PolyMage, $1.04\times$ over Pluto, and $5.11\times$ over PPCG.
 - Geomean speedup of $11.8\times$ over Intels Scipy and $2.2\times$ over MATLAB for DSP filters
- **Neglible compile time overhead** of model makes it suitable for incorporation in a general-purpose compiler infrastructure like MLIR.
- The model can be easily extended to multi-level tiling

We would like to thank the reviewers for their feedback that helped improve the paper significantly.

