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Loop tiling

f o r (i=1; i<T; i++)

f o r (j=1; j<N; j++)

A[i][j] = 0.125 * A[i-1][j-1] +

0.500 * A[i-1][j] +

0.125 * A[i-1][j+1];

Heat-1d kernel

Iteration space. S(i, j) → (i/2, (i + j)/2, i, i + j).

Loop tiling improves performance by exploiting reuse in a loop nest.

Small tile size =⇒ Under-utilization. Large tile size =⇒ Lesser parallelism.
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Motivation and Objective

Optimizing compilers Pluto and PPCG use default tile sizes and Performance
improvement of 6.4× over default tile sizes in certain cases.

Practical Tile Size Selection Model Motivation 4/23



Motivation and Objective

Optimizing compilers Pluto and PPCG use default tile sizes and Performance
improvement of 6.4× over default tile sizes in certain cases.

Practical Tile Size Selection Model Motivation 4/23



Outline

1 Motivation

2 Tile Size Selection Model

3 Optimizations

4 Results

5 Conclusion

Practical Tile Size Selection Model Tile Size Selection Model 5/23



Tile Size Selection Model

Objectives of the proposed tile size selection model

Work for arbitrary affine access.

Compute tile sizes quickly.

Tile any level in the memory hierarchy.

Consider effects of tiling on parallelism

Note our aim is not to find the optimal tile size but good tile sizes that can be
obtained quickly.
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Tile Size Selection Model: Intuition

Calculate
tile volume

Dimensional
reuse

Construct

reuse

expression

Solve

polynomial

Tiling is profitable when there is simultaneous reuse of data along multiple
dimensions

Larger tile sizes along dimensions with more reuse, utilizes the cache effectively.

Hence, in our model, tile sizes are proportional to reuse along the dimension
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Tile Size Selection Model: Inputs

Calculate
tile volume

Dimensional
reuse

Construct

reuse

expression

Solve
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Input to the tile size selection model:

cache size (L1 or L2)

datatype of the element stored

NumElementsInCache(C ) = cacheSize/elementSize

problem size

number of cores

Used to calculate effective computation, to avoid load imbalance
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Tile Size Selection Model: Dimensional Reuse

Calculate
tile volume

Dimensional
reuse

Construct

reuse

expression

Solve

polynomial

Dimensional Reuse along i (γi )
= Number of access which have temporal reuse along i

f o r ( i n t i = 0 ; i < N; i++)
f o r ( i n t j = 0 ; j < N; j++)

f o r ( i n t k = 0 ; k < N; k++)
C [ i ] [ j ] += A[ i ] [ k ] ∗ B[ k ] [ j ] ;

Reuse along γi = 1, γj = 1 and
γk = 2

Tile size for k will be twice that of
i or j .
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Tile Size Selection Model: Reuse expression

Calculate
tile volume

Dimensional
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expression
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The tile volume should fit in the cache.

t1 ∗ t2 + t2 ∗ t3 + t3 ∗ t1 = C .

In our model, tile sizes are proportional to dimensional reuse. Therefore,

ti = γi × τ , for every dimension i .

(γi ∗ γj + γj ∗ γk + γk ∗ γi ) ∗ τ2 = C .
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Tile Size Selection Model: Reuse expression

Calculate
tile Volume

Dimensional
reuse

Construct

reuse

expression

Solve
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(γi ∗ γj + γj ∗ γk + γk ∗ γi ) ∗ τ2 = C .

(0.5 ∗ 0.5 + 0.5 ∗ 1.0 + 1.0 ∗ 0.5) ∗ τ2 = 4096.

=⇒ 1.25 ∗ τ2 − 4096 = 0.

Solving for τ , tile sizes can be computed as, t1 = 28, t2 = 28 and t3 = 57.
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Tile Size Selection Model: Reuse Expression

Reuse Expressions for arbitrary affine accesses

memory no. of distinct accesses no. of distinct accesses
access w.r.t tile size w.r.t dimensional reuse

a[i ] τi γi ∗ τ
a[α ∗ i ] τi γi ∗ τ
a[i + j ] τi + τj (γi + γj) ∗ τ
a[i − j ] τi + τj (γi + γj) ∗ τ
a[i ][j ] τi ∗ τj (γi ∗ γj) ∗ τ2
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Intra-tile optimization: Matmul Example

f o r ( i n t i = 0 ; i < N; i++)
f o r ( i n t j = 0 ; j < N; j++)

f o r ( i n t k = 0 ; k < N; k++)
C [ i ] [ j ] += A[ i ] [ k ] ∗ B[ k ] [ j ] ;

dim s t v a score

i 0 1 false 4 -44
j 3 1 true 4 18
k 1 2 false 4 -6

loop k carries a dependence =⇒ Not parallel =⇒ Not vectorizable

loop i has non contiguous accesses for arrays C and A =⇒ Not vectorizable

score = score + (2 ∗ s) + (4 ∗ t) + (8 ∗ v)− (16 ∗ (a− s − t))

loop j has the highest score and is selected as the inner-most dimension
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Tile Size Selection Model

Assigns a constant large tile size for the vectorizable dimension

(γi + γk) ∗ 256 ∗ τ + (γk ∗ γi ) ∗ τ2 = C .

(0.5 + 1.0)256 ∗ τ + (1.0 ∗ 0.5) ∗ τ2 = (4096).

=⇒ 0.5 ∗ τ2 + 384 ∗ τ − 4096 = 0.
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Experimental Setup

Benchmarks

26 benchmarks from PolyBench.

2 Digital Signal Processing filters.

Image Processing benchmarks.

Experimental setup

Processors Intel(R) Xeon(R) Silver 4110 CPU @ 2.10 GHz
Cores 16 (8 per socket)
Private caches 32 KB L1 cache, 1 MB L2 cache
Memory 256 GB DDR4

Matlab version 9.9.0.1524771 (R2020b)
Scipy version 1.0.0

Compiler Intel C/C++ (icc/icpc) 19.1.2.254
Compiler flags -O3 -xhost -qopenmp -fma -ipo
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PolyBench Results
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PolyBench Results
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DSP Benchmark Results
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Conclusion

PolyBench

Mean speedup of 1.04× (max 1.3×) over Pluto for the entire PolyBench.
Mean speedup of 1.24× (max 3.65×) for linear algebra benchmarks.

Digital Signal Processing

Geomean speedup of 11.8× over Intels Scipy and 2.2× over MATLAB

Image Processing benchmarks

We get similar tile sizes as Jangda et. al. [PPoPP’18]

Code available - https://github.com/bondhugula/pluto
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Conclusion

Proposed a simple, fast, and practical approach for tile size selection

Model-driven and gives good performance improvement - frees existing tools
from using hardcoded sizes.

Geomean speedup of 1.24× over PolyMage, 1.04× over Pluto, and 5.11× over
PPCG.
Geomean speedup of 11.8× over Intels Scipy and 2.2× over MATLAB for DSP
filters

Neglible compile time overhead of model makes it suitable for incorporation in
a general-purpose compiler infrastructure like MLIR.

The model can be easily extended to multi-level tiling

We would like to thank the reviewers for their feedback that helped improve the paper
significantly.
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