Optimizing Matrix Computations with PolyMage

Kumudha Narasimhan

Advisor: Dr. Uday Kumar Reddy B

Computer Science and Automation
Indian Institute of Science
Bengaluru, India
July 10, 2018

Overview

(1) Introduction
(2) Motivation
(3) Objective
(4) Background
(5) DSL for Optimizing Matrix Computations

- Tile Size selection Model
- Intra-tile optimization
- Mapping to function calls
- Fusion for Reductions
(6) Experimental Evaluation
(7) Conclusion

Introduction

Matrix computations are found in many domains:

- Scientific computing
- Multi-resolution analysis kernel (MADNESS)(doitgen)
- Neural networks
- Convolution operation is represented and matrix-matrix multiplication
- Recurrent Neural networks consist of many matrix-vector multiplications
- Digital signal processing
- convolution operations are used in low pass filters

These computations usually form the bottleneck in the applications and hence optimizing them will improve the performance of the application

Motivation -Current state-of-art

Opimized Libraries

Optimizing Compilers PLUTO PPCG

Motivation -Current state-of-art

Opimized Libraries

- Hand Optimized or Highly tuned.
- Customized for various architectures

Optimizing Compilers PLUTO PPCG

DSLs

Motivation -Current state-of-art

Opimized Libraries

- Hand Optimized or Highly tuned.
- Customized for various architectures

Optimizing Compilers PLUTO PPCG

- Compiler performs architecture independent optimization
- Better productivity than libraries

Motivation -Current state-of-art

Opimized Libraries

- Hand Optimized or Highly tuned.
- Customized for various architectures

Optimizing Compilers PLUTO PPCG

- Compiler performs architecture independent optimization
- Better productivity than libraries

DSLs

Heque

 LGen:- Improves productivity
- Performs domain-specific optimizations

Motivation -Current state-of-art

Opimized Libraries

Math Kemel
 Lluan
 FFIW

- Hand Optimized or Highly tuned.
- Customized for various architectures
- Optimized only large matrix sizes
- Trade-off:

Productivity for Generality

- No reuse across library calls

DSLs

Optimizing Compilers PLUTO PPCG

- Compiler performs architecture independent optimization
- Better productivity than libraries
- Improves productivity
- Performs domain-specific optimizations

Motivation -Current state-of-art

Opimized Libraries

- Hand Optimized or Highly tuned.
- Customized for various architectures
- Optimized only large matrix sizes
- Trade-off:

Productivity for Generality

- No reuse across library calls

Optimizing Compilers PLUTO PPCG

- Compiler performs architecture independent optimization
- Better productivity than libraries
- Manual tuning of tile sizes
- Does not map to library calls
- Improves productivity
- Performs domain-specific optimizations

Motivation -Current state-of-art

Opimized Libraries

Math Kenel Mariay
 FFIW

- Hand Optimized or Highly tuned.
- Customized for various architectures
- Optimized only large matrix sizes
- Trade-off:

Productivity for Generality

- No reuse across library calls

Optimizing Compilers PLUTO PPCG

- Compiler performs architecture independent optimization
- Better productivity than libraries
- Manual tuning of tile sizes
- Does not map to library calls

DSLs

LGen:

- Improves productivity
- Performs domain-specific optimizations
- Naively map to library calls
- Target only small matrices
- Auto-tuning for locality
- ㅁoptimizations

Objective

- Perform Data Locality Optimizations
- Map to library calls
- Remove Manual or Auto-tuning
- Storage Optimization
- High level language constructs

Objective

- Perform Data Locality Optimizations
- Map to library calls
- Remove Manual or Auto-tuning
- Storage Optimization : Available in Polymage
- High level language constructs: Available in Polymage

PolyMage

PolyMage is Domain Specific Language which supports optmizations for:

- stencil operations
- point-wise operations
- down-sample and up-sample operations

PolyMage

PolyMage - Compiler Flow

Language Specification - Matmul Example

Existing PolyMage specification

```
\# Parameters
\(\mathrm{N}=\) Parameter(Int,"N")
\# variables
i = Variable(Int," \({ }^{\prime \prime}\) )
j = Variable(Int," \({ }^{\prime \prime}\) )
k = Variable(Int," \({ }^{\prime \prime}\) )
\# Input
A \(=\) Image (Double, "A", \([\mathrm{N}, \mathrm{N}]\) )
\(B=\) Image (Double,"B", [N, N])
\# Domain/ Intervals
n_dom \(=\) Interval(Int, \(0, N-1)\)
\# Matrix multiplication operation
\(\mathrm{C}=\) Reduction (([i,j], [n_dom, n_dom]),
    ([i,j,k],
        [n_dom, n_dom, n_dom]),
    Double,"C")
C. defn \(=\) [Reduce(C(i, j),
    \(A(i, k) * B(k, j)\),
    Op.Sum)]
```


Language Specification - Matmul Example

Existing PolyMage specification

```
\# Parameters
\(\mathrm{N}=\) Parameter(Int,"N")
\# variables
i = Variable(Int," \({ }^{\prime \prime}\) ")
j = Variable(Int," \({ }^{\prime \prime}\) )
k = Variable(Int," \(k\) ")
\# Input
\(A=\operatorname{Image}(\) Double ," \(A ",[N, N])\)
\(B=\) Image (Double, "B", [N, N])
\# Domain/ Intervals
n_dom \(=\) Interval(Int, \(0, N-1)\)
\# Matrix multiplication operation
\(\mathrm{C}=\) Reduction ( \([\mathrm{i}, \mathrm{j}], \quad[\mathrm{n}\)-dom, n _dom]),
                        ( \([\mathrm{i}, \mathrm{j}, \mathrm{k}]\),
                        [n_dom, n_dom, n_dom]),
                        Double,"C")
C. defn \(=[\operatorname{Reduce}(C(i, j)\),
    \(A(i, k) * B(k, j)\),
    Op.Sum)]
```

New PolyMage specification

```
\# Parameters
\(\mathrm{N}=\) Parameter(Int,"N")
```

\# Input matrices
A = Matrix (Double,"A" ,[N, N])
$B=\operatorname{Matrix}($ Double, "B", $[N, N])$
\# Matrix multiplication
$\mathrm{C}=\mathrm{A} * \mathrm{~B}$

Language Specification

Overloaded Operators introduced

Operator	Usage	Description
+	$\mathbf{A}+\mathbf{B}$	Point-wise addition
-	$\mathbf{A}-\mathbf{B}$	Point-wise subtraction
$*$	$\mathbf{A} * \mathbf{B}$	Multiplication

Language Specification

Overloaded Operators introduced

Operator	Usage	Description
+	$\mathbf{A}+\mathbf{B}$	Point-wise addition
-	$\mathbf{A}-\mathbf{B}$	Point-wise subtraction
$*$	$\mathbf{A} * \mathbf{B}$	Multiplication

Functions introduced
Function name with usage Description

elementwise_mul(A, B)	Eler
scalar_mul(A, α)	Matrix/Vector Scalar multiplic
transpose($\mathbf{(A)}$	Transpose
B, matC, $M, N, \alpha, \beta)$	Symmetric Matrix multiply
matA, matB, matC, α, β)	Symmetric rank-2k operations
$\operatorname{syrk}(\boldsymbol{m a t} \mathbf{A}, \boldsymbol{m a t} \mathbf{C}, \alpha, \beta)$	Symmetric rank-k operations
$\operatorname{trmm}(\mathbf{m a t} \mathbf{A}, \mathbf{m a t} \mathbf{B}, \alpha, \beta)$	Triangular Matrix multiply

Tile Size Selection Model

- Tile size has an effect on performance
- $3.57 \times$ improvement between default and best tile size for matmul

Tile Size Selection Model - Matmul

- Based on dimensional reuse along a dimension
- Let t_{i}, t_{j} and t_{k} be tile sizes for loops i, j and k respectively
- Tile Volume is given by:

$$
\begin{equation*}
t_{i} * t_{j}+t_{j} * t_{k}+t_{k} * t_{i}=T \tag{1}
\end{equation*}
$$

- Let tile size for $\operatorname{dim} i$ be $t_{i}=\gamma_{i} * t$ where γ_{i} is the dimensional reuse

Tile Size Selection Model - Matmul

- Based on dimensional reuse along a dimension
- Let t_{i}, t_{j} and t_{k} be tile sizes for loops i, j and k respectively
- Tile Volume is given by:

$$
\begin{equation*}
t_{i} * t_{j}+t_{j} * t_{k}+t_{k} * t_{i}=T \tag{1}
\end{equation*}
$$

- Let tile size for $\operatorname{dim} i$ be $t_{i}=\gamma_{i} * t$ where γ_{i} is the dimensional reuse

$$
\begin{gather*}
\left(\gamma_{i} * \gamma_{j}+\gamma_{j} * \gamma_{k}+\gamma_{k} * \gamma_{i}\right) * t^{2}=\mathbf{C} \tag{2}\\
\gamma_{i}=0.5, \gamma_{j}=0.5, \gamma_{k}=1 \tag{3}
\end{gather*}
$$

$(0.5 * t) * 256+256 *(0.5 * t)+(1.0 * 0.5) * t^{2}=(32768 / 8)$

$$
\begin{equation*}
0.5 * t^{2}+256 * t-4096=0 \tag{4}
\end{equation*}
$$

$t_{i}=7, t_{j}=256$ and $_{k}=15$.

Tile Size Selection Model - Reuse Equation

Reuse Equations

access	distinct accesses	reuse equation
$a[i]$	t_{i}	$\gamma_{i} * t$
$a[\alpha * i]$	t_{i}	$\gamma_{i} * t$
$a[i+j]$	$t_{i}+t_{j}$	$\left(\gamma_{i}+\gamma_{j}\right) * t$
$a[i-j]$	$t_{i}+t_{j}$	$\left(\gamma_{i}+\gamma_{j}\right) * t$
$a[i][j]$	$t_{i} * t_{j}$	$\left(\gamma_{i} * \gamma_{j}\right) * t$

Tile Size Selection Model - Reuse Equation

Reuse Equations

access	distinct accesses	reuse equation	DSP Code Snippet
a[i]	t_{i}	$\gamma_{i} * t$	
$a[\alpha * i]$	t_{i}	$\gamma_{i} * t$	for (int $\mathrm{jj}=0 ;(\mathrm{jj}<=\mathrm{t} 2) ; \mathrm{jj}++$)
$a[i+j]$	$t_{i}+t_{j}$	$\left(\gamma_{i}+\gamma_{j}\right) * t$	ybs[ii]+=yds[(M+ii)-jj]
$a[i-j]$	$t_{i}+t_{j}$	$\left(\gamma_{i}+\gamma_{j}\right) * t$	* window[jj];
$a[i][j]$	$t_{i} * t_{j}$	$\left(\gamma_{i} * \gamma_{j}\right) * t$	

Tile Size Selection Model - Reuse Equation

Reuse Equations

access	distinct accesses	reuse equation
$a[i]$	t_{i}	$\gamma_{i} * t$
$a[\alpha * i]$	t_{i}	$\gamma_{i} * t$
$a[i+j]$	$t_{i}+t_{j}$	$\left(\gamma_{i}+\gamma_{j}\right) * t$
$a[i-j]$	$t_{i}+t_{j}$	$\left(\gamma_{i}+\gamma_{j}\right) * t$
$a[i][j]$	$t_{i} * t_{j}$	$\left(\gamma_{i} * \gamma_{j}\right) * t$

DSP Code Snippet
for (int $\mathrm{i} \mathrm{i}=0 ;(\mathrm{i}<==\mathrm{t} 1) ; \mathrm{i} \mathrm{i}++$)
for (int $\mathrm{j}=0$; $(\mathrm{jj}<=\mathrm{t} 2) \mathrm{i} \mathrm{j} \mathrm{j}++$)
ybs[ii]+=yds[(M+ii)-jj]

* window[jj];
- Let tile size of i be $t 1$ and j be $t 2$

Tile Size Selection Model - Reuse Equation

Reuse Equations

access	distinct accesses	reuse equation	DSP Code Snippet
$a[i]$	t_{i}	$\gamma_{i} * t$	
$a[\alpha * i]$	t_{i}	$\gamma_{i} * t$	for (int $\mathrm{jj}=0 ;(\mathrm{jj}<=\mathrm{t} 2) ; \mathrm{jj}++$)
$a[i+j]$	$t_{i}+t_{j}$	$\left(\gamma_{i}+\gamma_{j}\right) * t$	$y b s[i i]+=y d s[(M+i i)-j j]$ * window[jj]
$a[i-j]$	$t_{i}+t_{j}$	$\left(\gamma_{i}+\gamma_{j}\right) * t$	* window ${ }^{\text {ajj }}$;
$a[i][j]$	$t_{i} * t_{j}$	$\left(\gamma_{i} * \gamma_{j}\right) * t$	

- Let tile size of i be $t 1$ and j be $t 2$
- Memory required by $y b s$ is $t 1$ and window is $t 2$

Tile Size Selection Model - Reuse Equation

Reuse Equations

access	distinct accesses	reuse equation	DSP Code Snippet
${ }_{\text {a }}$ [$]$	t_{i}	$\gamma_{i} * t$	for (int ii $=0$; $\mathrm{i} i<=\mathrm{t} 1)$; $\mathrm{i}+++$)
$a[\alpha * i]$	t_{i}	$\gamma_{i} * t$	for (int $\mathrm{j} j=0 ;(\mathrm{jj}<=\mathrm{t} 2) ; \mathrm{jj}++$)
$a[i+j]$	$t_{i}+t_{j}$	$\left(\gamma_{i}+\gamma_{j}\right) * t$	ybs[ii]+=yds[(M+ii)-jj]$\underset{*}{+}$ window $[j j]:$
$a[i-j]$	$t_{i}+t_{j}$	$\left(\gamma_{i}+\gamma_{j}\right) * t$	* window[jj];
$a[i][j]$	$t_{i} * t_{j}$	$\left(\gamma_{i} * \gamma_{j}\right) * t$	

- Let tile size of i be $t 1$ and j be $t 2$
- Memory required by $y b s$ is $t 1$ and window is $t 2$
- Memory required by $y d s$ is calculated as $(t 1-0)-(0-t 2)=t 1+t 2$

Tile Size Selection Model - Reuse Equation

Reuse Equations

access	distinct accesses	reuse equation	DSP Code Snippet
$a[i]$	t_{i}	$\gamma_{i} * t$	
$a[\alpha * i]$	t_{i}	$\gamma_{i} * t$	for (int $\mathrm{jj}=0 ;(\mathrm{jj}<=\mathrm{t} 2) ; \mathrm{jj}++$)
$a[i+j]$	$t_{i}+t_{j}$	$\left(\gamma_{i}+\gamma_{j}\right) * t$	$y b s[i i]+=y d s[(M+i i)-j j]$ * window[jj]
$a[i-j]$	$t_{i}+t_{j}$	$\left(\gamma_{i}+\gamma_{j}\right) * t$	* window ${ }^{\text {ajj }}$;
$a[i][j]$	$t_{i} * t_{j}$	$\left(\gamma_{i} * \gamma_{j}\right) * t$	

- Let tile size of i be $t 1$ and j be $t 2$
- Memory required by $y b s$ is $t 1$ and window is $t 2$
- Memory required by $y d s$ is calculated as $(t 1-0)-(0-t 2)=t 1+t 2$
- $(t 1)+(t 1+t 2)+(t 2)=T$

Tile Size Selection Model - Algorithm

Input: group G, cache_size, inner_tile_size, inner_dim, nDims
Output: Tile sizes of each dimension of G
1 Function ComputeTileSize(G, cache_size, inner_tile_size, inner_dim, nDims):
2 dim_reuse [1...nDims] $\leftarrow \operatorname{getDimReuse}(G)$
inner_dim_size \leftarrow getInnerDimSize (G)
tile_sizes [inner_dim] $\leftarrow \min$ (inner_dim_size, inner_tile_size)
mem_access \leftarrow distinct memory references in G
reuse_eqn \leftarrow getReuseEquation (mem_access, dim_reuse, inner_dim, tile_size)
root \leftarrow floor(positive_root(reuse_eqn))
for each $i \in n$ Dims do
tile_sizes $[i] \leftarrow$ dim_reuse[i] * root
endfor
return tile_sizes

Intra-tile optimization

- Vectorization benefits performance
- Performance benefits by making the inner-loop vectorizable
- $2.74 \times$ improvement over best performing tiled code.

Intra-tile optimization - Matmul

$$
\begin{aligned}
& \text { for (int } i=0 ; i<=N I ; i=i+1) \\
& \quad \text { for } \boldsymbol{i n t} j=0 ; j<=N J ; j=j+1) \\
& \quad \text { for }(\text { int } k=0 ; k<=N K ; k=k+1) \\
& \quad C[i][j]=C[i][j]+(A[i][k] \\
&
\end{aligned}
$$

- loop k carries a dependence $=>$ Not parallel $=>$ Not vectorizable
- loop i has non contiguous accesses for arrays C and $A=>$ Not vectorizable

Intra-tile optimization - Matmul

$$
\begin{aligned}
& \text { for (int } i=0 ; i<=N I ; i=i+1) \\
& \text { for (int } \mathrm{j}=0 ; \mathrm{j}<=\mathrm{NJ} ; \mathrm{j}=\mathrm{j}+1 \text {) } \\
& \text { for (int } k=0 ; k<=N K ; k=k+1) \\
& C[i][j]=C[i][j]+(A[i][k]
\end{aligned}
$$

- loop k carries a dependence $=>$ Not parallel $=>$ Not vectorizable
- loop i has non contiguous accesses for arrays C and $A=>$ Not vectorizable
- score $=$ score $+(2 * s)+(4 * t)+(8 * v)-(16 *(a-s-t))$
- loop j has the highest score and is selected as the inner-most dimension

Intra-tile optimization

Algorithm 1: Intra-Tile Optimization

```
Input: group (G)
```

Output: Innermost dimension for each function in G
1 Function Intra-tile Optimization(G):
for each function $(f) \in \operatorname{group}(G)$ do
for each dimension (d) \in function (f) do
$\mathrm{s} \leftarrow$ getNumSpatialReuse (d, f)
$\mathrm{t} \leftarrow$ getNumTemporalReuse (d, f)
$a \leftarrow \operatorname{get}$ TotalAccess (d, f)
$v \leftarrow$ isVectorizable (d, f)
score[d] \leftarrow score[d] +
$(2 * s)+(4 * t)+(8 * v)-(16 *(a-s-t))$
endfor
endfor
inner_dim \leftarrow getDimWithMaxScore(score)
return inner_dim

Mapping to function calls

- Idiom Recognition stage - Traverse the AST
- Allows to maintain backward compatibility
- Map to libraries only when profitable
- BLAS Routines
- Mapped only when $M * N * K \geq(256)^{3}$
- Obtained after experimental evaluation
- FFTW: Always. Reduces complexity from
- Always mapped to library call.
- Reduces complexity from $\mathcal{O}\left(N^{2}\right)$ to $\mathcal{O}(N \log N)$

Fusion for Reductions

```
for \((\mathrm{i} 1=0 ; \mathrm{i}<\mathrm{NI} ; \mathrm{i}++\) )
    for (j1 = 0; j \(<\mathrm{NJ} ; \mathrm{j}++\) )
    for \((k 1=0 ; k<N K ;+k)\)
    tmp[i1][j1] +=A[i1][k1] * B[k1][j1]; \\S1
for \((\mathrm{i} 2=0 ; \mathrm{i}<\mathrm{NI} ; \mathrm{i}++\) )
    for \((\mathrm{j} 2=0 ; \mathrm{j}<\mathrm{NL} ; \mathrm{j}++\) )
        out[i2][j2] \(=\operatorname{tmp}[\mathrm{i} 2][\mathrm{j} 2]+\mathrm{b}[\mathrm{j} 2] ; \backslash \mathrm{S} 2\)
```


Fusion for Reductions

```
for (i1 = 0; i < NI; i++)
    for (j1 = 0; j < NJ; j++)
        for (k1 = 0; k < NK; ++k)
        tmp[i1][j1] += A[i1][k1] * B[k1][j1]; \\S1
for (i2 = 0; i < NI; i++)
    for (j2 = 0; j < NL; j++)
        out[i2][j2] = tmp[i2][j2] + b[j2]; \\S2
```

- RAW dependence on Line 4 by tmp[i1][j1]
- RAW dependence between write of $t m p[i 1][j 1]$ on Line 4 and read of tmp[i2][j2] on Line 7
- Dimension matching or Alignment is applied for S1 and S2
- Fusion happens only if the alignment is successful
- Alignment Vectors S1: [i1, j1, k1], S2: [i2, j2, -]
- loops $i 1, i 2$ and $j 1, j 2$ are fused.

Experimental Setup

Processors	2-socket Intel Xeon E5-2630 v3
Clock	2.40 GHz
Cores	16 (8 per socket)
Hyperthreading	disabled
Private caches	64 KB L1 cache, 512 KB L2 cache
Shared cache	$20,480 \mathrm{~KB} \mathrm{L3} \mathrm{cache}$
Memory	64 GB DDR4
Matlab version	9.3 .0 .713579 (R2017b)
Scipy version	1.0 .0
Compiler	Intel C/C++ (icc/icpc) 18.0.1
Compiler flags	$-\mathrm{O3}$-xhost -qopenmp -fma -ipo
OS	Linux kernel 3.10.0 (64-bit) (Cent OS 7.3)

Benchmarks

PolyBench

- blas computations from linear algebra benchmark
- kernel computations from linear algebra benchmark

Digital Signal Processing

- unwanted spectral filter: Removes noise in input signal
- vuvuzela filter: Filters out vuvuzela noise from input signal Image Processing
- To compare our tile size model with state-of-art

Performance Analysis - PolyBench

Speedup for EXTRALARGE Dataset

Mean Speedup

- $3.6 \times$ over Pluto
- $4.1 \times$ over PPCG
- $7.5 \times$ Polymage-uno
- 39\% over Intel MKL

Performance Analysis - PolyBench

Speedup for EXTRALARGE Dataset

Mean Speedup

- $3.6 \times$ over Pluto
- $4.1 \times$ over PPCG
- $7.5 \times$ Polymage-unor
- 39% over Intel MKL

Performance Analysis - DSP

Execution time for DSP benchmarks and scaling across cores

Mean speed up of

- $7.7 \times$ over existing PolyMage optimizer,
- $5.1 \times$ over Intel's Scipy and
- $1.9 \times$ over MATLAB

Conclusion

- A DSL approach to optimize Matrix Computations
- Tile size selection model which is applicable for arbitrary affine access
- Implemented a heuristic to map to function calls when profitable
- Implemented an intra-tile optmization algorithm to enhance auto-vectorization
- PolyBench Benchmarks: Speedup of $3.6 \times$ over Pluto, $4.1 \times$ over PPCG
- DSP Benchmarks: speedup of $5.1 \times$ over Intel's Scipy and $1.9 \times$ over MATLAB

