
Optimizing Matrix Computations with PolyMage

Kumudha Narasimhan

Advisor : Dr. Uday Kumar Reddy B

Computer Science and Automation
Indian Institute of Science

Bengaluru, India

July 10, 2018

Optimizing Matrix Computations July 10, 2018 1 / 25

Overview

1 Introduction

2 Motivation

3 Objective

4 Background

5 DSL for Optimizing Matrix Computations
Tile Size selection Model
Intra-tile optimization
Mapping to function calls
Fusion for Reductions

6 Experimental Evaluation

7 Conclusion

Optimizing Matrix Computations July 10, 2018 2 / 25

Introduction

Matrix computations are found in many domains:

Scientific computing
Multi-resolution analysis kernel (MADNESS)(doitgen)

Neural networks
Convolution operation is represented and matrix-matrix multiplication
Recurrent Neural networks consist of many matrix-vector
multiplications

Digital signal processing
convolution operations are used in low pass filters

These computations usually form the bottleneck in the applications and
hence optimizing them will improve the performance of the application

Optimizing Matrix Computations Introduction July 10, 2018 3 / 25

Motivation -Current state-of-art

Opimized Libraries

Hand Optimized or
Highly tuned.

Customized for
various
architectures

Optimized only
large matrix sizes

Trade-off:
Productivity for
Generality

No reuse across
library calls

Optimizing Compilers

Compiler performs
architecture
independent
optimization

Better productivity
than libraries

Manual tuning of
tile sizes

Does not map to
library calls

DSLs

Improves
productivity

Performs
domain-specific
optimizations

Naively map to
library calls

Target only small
matrices

Auto-tuning for
locality
optimizations

Optimizing Matrix Computations Motivation July 10, 2018 4 / 25

Motivation -Current state-of-art

Opimized Libraries

Hand Optimized or
Highly tuned.

Customized for
various
architectures

Optimized only
large matrix sizes

Trade-off:
Productivity for
Generality

No reuse across
library calls

Optimizing Compilers

Compiler performs
architecture
independent
optimization

Better productivity
than libraries

Manual tuning of
tile sizes

Does not map to
library calls

DSLs

Improves
productivity

Performs
domain-specific
optimizations

Naively map to
library calls

Target only small
matrices

Auto-tuning for
locality
optimizations

Optimizing Matrix Computations Motivation July 10, 2018 4 / 25

Motivation -Current state-of-art

Opimized Libraries

Hand Optimized or
Highly tuned.

Customized for
various
architectures

Optimized only
large matrix sizes

Trade-off:
Productivity for
Generality

No reuse across
library calls

Optimizing Compilers

Compiler performs
architecture
independent
optimization

Better productivity
than libraries

Manual tuning of
tile sizes

Does not map to
library calls

DSLs

Improves
productivity

Performs
domain-specific
optimizations

Naively map to
library calls

Target only small
matrices

Auto-tuning for
locality
optimizations

Optimizing Matrix Computations Motivation July 10, 2018 4 / 25

Motivation -Current state-of-art

Opimized Libraries

Hand Optimized or
Highly tuned.

Customized for
various
architectures

Optimized only
large matrix sizes

Trade-off:
Productivity for
Generality

No reuse across
library calls

Optimizing Compilers

Compiler performs
architecture
independent
optimization

Better productivity
than libraries

Manual tuning of
tile sizes

Does not map to
library calls

DSLs

Improves
productivity

Performs
domain-specific
optimizations

Naively map to
library calls

Target only small
matrices

Auto-tuning for
locality
optimizations

Optimizing Matrix Computations Motivation July 10, 2018 4 / 25

Motivation -Current state-of-art

Opimized Libraries

Hand Optimized or
Highly tuned.

Customized for
various
architectures

Optimized only
large matrix sizes

Trade-off:
Productivity for
Generality

No reuse across
library calls

Optimizing Compilers

Compiler performs
architecture
independent
optimization

Better productivity
than libraries

Manual tuning of
tile sizes

Does not map to
library calls

DSLs

Improves
productivity

Performs
domain-specific
optimizations

Naively map to
library calls

Target only small
matrices

Auto-tuning for
locality
optimizations

Optimizing Matrix Computations Motivation July 10, 2018 4 / 25

Motivation -Current state-of-art

Opimized Libraries

Hand Optimized or
Highly tuned.

Customized for
various
architectures

Optimized only
large matrix sizes

Trade-off:
Productivity for
Generality

No reuse across
library calls

Optimizing Compilers

Compiler performs
architecture
independent
optimization

Better productivity
than libraries

Manual tuning of
tile sizes

Does not map to
library calls

DSLs

Improves
productivity

Performs
domain-specific
optimizations

Naively map to
library calls

Target only small
matrices

Auto-tuning for
locality
optimizations

Optimizing Matrix Computations Motivation July 10, 2018 4 / 25

Motivation -Current state-of-art

Opimized Libraries

Hand Optimized or
Highly tuned.

Customized for
various
architectures

Optimized only
large matrix sizes

Trade-off:
Productivity for
Generality

No reuse across
library calls

Optimizing Compilers

Compiler performs
architecture
independent
optimization

Better productivity
than libraries

Manual tuning of
tile sizes

Does not map to
library calls

DSLs

Improves
productivity

Performs
domain-specific
optimizations

Naively map to
library calls

Target only small
matrices

Auto-tuning for
locality
optimizations

Optimizing Matrix Computations Motivation July 10, 2018 4 / 25

Objective

Perform Data Locality Optimizations

Map to library calls

Remove Manual or Auto-tuning

Storage Optimization

: Available in Polymage

High level language constructs

: Available in Polymage

Optimizing Matrix Computations Objective July 10, 2018 5 / 25

Objective

Perform Data Locality Optimizations

Map to library calls

Remove Manual or Auto-tuning

Storage Optimization : Available in Polymage

High level language constructs: Available in Polymage

Optimizing Matrix Computations Objective July 10, 2018 5 / 25

PolyMage

PolyMage is Domain Specific Language which supports optmizations for:

stencil operations

point-wise operations

down-sample and up-sample operations

Optimizing Matrix Computations Background July 10, 2018 6 / 25

PolyMage

Fusion +
Tiling

Tile size
and Cost

determination

Initial schedule

Function graph
Static bounds

check

DSL Spec-
ification

Storage
Optimization

Code Generation

Opt C++ code

Optimizing Matrix Computations Background July 10, 2018 7 / 25

PolyMage - Compiler Flow

Fusion +
Tiling

Intra-tile
optimization

Tile size
and Cost

determination

Initial schedule

Function graph
Static bounds

check

DSL Spec-
ification

Idiom
recognition
& Library
mapping

Storage
Optimization

Code Generation

Opt C++ code

Optimizing Matrix Computations DSL for Optimizing Matrix Computations July 10, 2018 8 / 25

Language Specification - Matmul Example

Existing PolyMage specification

Parameter s
N = Parameter (Int , ”N”)
v a r i a b l e s
i = V a r i a b l e (Int , ” i ”)
j = V a r i a b l e (Int , ” j ”)
k = V a r i a b l e (Int , ”k”)
Inpu t
A = Image (Double , ”A” , [N, N])
B = Image (Double , ”B” , [N, N])
Domain/ I n t e r v a l s
n dom = I n t e r v a l (Int , 0 ,N−1)

Matr i x m u l t i p l i c a t i o n o p e r a t i o n
C = Reduct ion (([i , j] , [n dom , n dom]) ,

([i , j , k] ,
[n dom , n dom , n dom]) ,

Double , ”C”)
C . d e f n = [Reduce (C(i , j) ,

A(i , k) ∗ B(k , j) ,
Op . Sum)]

New PolyMage specification

Parameter s
N = Parameter (Int , ”N”)

Inpu t ma t r i c e s
A = Matr ix (Double , ”A” , [N, N])
B = Matr ix (Double , ”B” , [N, N])

Matr i x m u l t i p l i c a t i o n
C = A ∗ B

Optimizing Matrix Computations DSL for Optimizing Matrix Computations July 10, 2018 9 / 25

Language Specification - Matmul Example

Existing PolyMage specification

Parameter s
N = Parameter (Int , ”N”)
v a r i a b l e s
i = V a r i a b l e (Int , ” i ”)
j = V a r i a b l e (Int , ” j ”)
k = V a r i a b l e (Int , ”k”)
Inpu t
A = Image (Double , ”A” , [N, N])
B = Image (Double , ”B” , [N, N])
Domain/ I n t e r v a l s
n dom = I n t e r v a l (Int , 0 ,N−1)

Matr i x m u l t i p l i c a t i o n o p e r a t i o n
C = Reduct ion (([i , j] , [n dom , n dom]) ,

([i , j , k] ,
[n dom , n dom , n dom]) ,

Double , ”C”)
C . d e f n = [Reduce (C(i , j) ,

A(i , k) ∗ B(k , j) ,
Op . Sum)]

New PolyMage specification

Parameter s
N = Parameter (Int , ”N”)

Inpu t ma t r i c e s
A = Matr ix (Double , ”A” , [N, N])
B = Matr ix (Double , ”B” , [N, N])

Matr i x m u l t i p l i c a t i o n
C = A ∗ B

Optimizing Matrix Computations DSL for Optimizing Matrix Computations July 10, 2018 9 / 25

Language Specification

Overloaded Operators introduced

Operator Usage Description

+ A + B Point-wise addition
− A− B Point-wise subtraction
∗ A ∗ B Multiplication

Functions introduced

Function name with usage Description

elementwise mul(A,B) Element-wise multiplication
scalar mul(A, α) Matrix/Vector Scalar multiplication

transpose(A) Transpose
symm(matA,matB,matC,M,N, α, β) Symmetric Matrix multiply

syr2k(matA,matB,matC, α, β) Symmetric rank-2k operations
syrk(matA,matC, α, β) Symmetric rank-k operations

trmm(matA,matB, α, β) Triangular Matrix multiply

Optimizing Matrix Computations DSL for Optimizing Matrix Computations July 10, 2018 10 / 25

Language Specification

Overloaded Operators introduced

Operator Usage Description

+ A + B Point-wise addition
− A− B Point-wise subtraction
∗ A ∗ B Multiplication

Functions introduced

Function name with usage Description

elementwise mul(A,B) Element-wise multiplication
scalar mul(A, α) Matrix/Vector Scalar multiplication

transpose(A) Transpose
symm(matA,matB,matC,M,N, α, β) Symmetric Matrix multiply

syr2k(matA,matB,matC, α, β) Symmetric rank-2k operations
syrk(matA,matC, α, β) Symmetric rank-k operations

trmm(matA,matB, α, β) Triangular Matrix multiply

Optimizing Matrix Computations DSL for Optimizing Matrix Computations July 10, 2018 10 / 25

Tile Size Selection Model

default best

0.5

0.14

E
x
e
c
u
ti
o
n

ti
m
e
(m

s)

Tile size has an effect on performance

3.57× improvement between default and best tile size for matmul

Optimizing Matrix Computations DSL for Optimizing Matrix Computations July 10, 2018 11 / 25

Tile Size Selection Model - Matmul

Based on dimensional reuse along a dimension

Let ti , tj and tk be tile sizes for loops i , j and k respectively

Tile Volume is given by:

ti ∗ tj + tj ∗ tk + tk ∗ ti = T . (1)

Let tile size for dim i be ti = γi ∗ t where γi is the dimensional reuse

(γi ∗ γj + γj ∗ γk + γk ∗ γi) ∗ t2 = C. (2)

γi = 0.5, γj = 0.5, γk = 1

(0.5 ∗ t) ∗ 256 + 256 ∗ (0.5 ∗ t) + (1.0 ∗ 0.5) ∗ t2 = (32768/8) (3)

0.5 ∗ t2 + 256 ∗ t − 4096 = 0 (4)

ti = 7, tj = 256andtk = 15.

Optimizing Matrix Computations DSL for Optimizing Matrix Computations July 10, 2018 12 / 25

Tile Size Selection Model - Matmul

Based on dimensional reuse along a dimension

Let ti , tj and tk be tile sizes for loops i , j and k respectively

Tile Volume is given by:

ti ∗ tj + tj ∗ tk + tk ∗ ti = T . (1)

Let tile size for dim i be ti = γi ∗ t where γi is the dimensional reuse

(γi ∗ γj + γj ∗ γk + γk ∗ γi) ∗ t2 = C. (2)

γi = 0.5, γj = 0.5, γk = 1

(0.5 ∗ t) ∗ 256 + 256 ∗ (0.5 ∗ t) + (1.0 ∗ 0.5) ∗ t2 = (32768/8) (3)

0.5 ∗ t2 + 256 ∗ t − 4096 = 0 (4)

ti = 7, tj = 256andtk = 15.
Optimizing Matrix Computations DSL for Optimizing Matrix Computations July 10, 2018 12 / 25

Tile Size Selection Model - Reuse Equation

Reuse Equations

access distinct accesses reuse equation

a[i] ti γi ∗ t
a[α ∗ i] ti γi ∗ t
a[i + j] ti + tj (γi + γj) ∗ t
a[i − j] ti + tj (γi + γj) ∗ t
a[i][j] ti ∗ tj (γi ∗ γj) ∗ t

DSP Code Snippet

f o r (i n t i i =0;(i i <=t1) ; i i ++)
f o r (i n t j j =0;(j j <=t2) ; j j ++)

ybs [i i]+=yds [(M + i i) − j j]
∗ window [j j] ;

Let tile size of i be t1 and j be t2

Memory required by ybs is t1 and window is t2

Memory required by yds is calculated as (t1− 0)− (0− t2) = t1 + t2

(t1) + (t1 + t2) + (t2) = T

Optimizing Matrix Computations DSL for Optimizing Matrix Computations July 10, 2018 13 / 25

Tile Size Selection Model - Reuse Equation

Reuse Equations

access distinct accesses reuse equation

a[i] ti γi ∗ t
a[α ∗ i] ti γi ∗ t
a[i + j] ti + tj (γi + γj) ∗ t
a[i − j] ti + tj (γi + γj) ∗ t
a[i][j] ti ∗ tj (γi ∗ γj) ∗ t

DSP Code Snippet

f o r (i n t i i =0;(i i <=t1) ; i i ++)
f o r (i n t j j =0;(j j <=t2) ; j j ++)

ybs [i i]+=yds [(M + i i) − j j]
∗ window [j j] ;

Let tile size of i be t1 and j be t2

Memory required by ybs is t1 and window is t2

Memory required by yds is calculated as (t1− 0)− (0− t2) = t1 + t2

(t1) + (t1 + t2) + (t2) = T

Optimizing Matrix Computations DSL for Optimizing Matrix Computations July 10, 2018 13 / 25

Tile Size Selection Model - Reuse Equation

Reuse Equations

access distinct accesses reuse equation

a[i] ti γi ∗ t
a[α ∗ i] ti γi ∗ t
a[i + j] ti + tj (γi + γj) ∗ t
a[i − j] ti + tj (γi + γj) ∗ t
a[i][j] ti ∗ tj (γi ∗ γj) ∗ t

DSP Code Snippet

f o r (i n t i i =0;(i i <=t1) ; i i ++)
f o r (i n t j j =0;(j j <=t2) ; j j ++)

ybs [i i]+=yds [(M + i i) − j j]
∗ window [j j] ;

Let tile size of i be t1 and j be t2

Memory required by ybs is t1 and window is t2

Memory required by yds is calculated as (t1− 0)− (0− t2) = t1 + t2

(t1) + (t1 + t2) + (t2) = T

Optimizing Matrix Computations DSL for Optimizing Matrix Computations July 10, 2018 13 / 25

Tile Size Selection Model - Reuse Equation

Reuse Equations

access distinct accesses reuse equation

a[i] ti γi ∗ t
a[α ∗ i] ti γi ∗ t
a[i + j] ti + tj (γi + γj) ∗ t
a[i − j] ti + tj (γi + γj) ∗ t
a[i][j] ti ∗ tj (γi ∗ γj) ∗ t

DSP Code Snippet

f o r (i n t i i =0;(i i <=t1) ; i i ++)
f o r (i n t j j =0;(j j <=t2) ; j j ++)

ybs [i i]+=yds [(M + i i) − j j]
∗ window [j j] ;

Let tile size of i be t1 and j be t2

Memory required by ybs is t1 and window is t2

Memory required by yds is calculated as (t1− 0)− (0− t2) = t1 + t2

(t1) + (t1 + t2) + (t2) = T

Optimizing Matrix Computations DSL for Optimizing Matrix Computations July 10, 2018 13 / 25

Tile Size Selection Model - Reuse Equation

Reuse Equations

access distinct accesses reuse equation

a[i] ti γi ∗ t
a[α ∗ i] ti γi ∗ t
a[i + j] ti + tj (γi + γj) ∗ t
a[i − j] ti + tj (γi + γj) ∗ t
a[i][j] ti ∗ tj (γi ∗ γj) ∗ t

DSP Code Snippet

f o r (i n t i i =0;(i i <=t1) ; i i ++)
f o r (i n t j j =0;(j j <=t2) ; j j ++)

ybs [i i]+=yds [(M + i i) − j j]
∗ window [j j] ;

Let tile size of i be t1 and j be t2

Memory required by ybs is t1 and window is t2

Memory required by yds is calculated as (t1− 0)− (0− t2) = t1 + t2

(t1) + (t1 + t2) + (t2) = T

Optimizing Matrix Computations DSL for Optimizing Matrix Computations July 10, 2018 13 / 25

Tile Size Selection Model - Reuse Equation

Reuse Equations

access distinct accesses reuse equation

a[i] ti γi ∗ t
a[α ∗ i] ti γi ∗ t
a[i + j] ti + tj (γi + γj) ∗ t
a[i − j] ti + tj (γi + γj) ∗ t
a[i][j] ti ∗ tj (γi ∗ γj) ∗ t

DSP Code Snippet

f o r (i n t i i =0;(i i <=t1) ; i i ++)
f o r (i n t j j =0;(j j <=t2) ; j j ++)

ybs [i i]+=yds [(M + i i) − j j]
∗ window [j j] ;

Let tile size of i be t1 and j be t2

Memory required by ybs is t1 and window is t2

Memory required by yds is calculated as (t1− 0)− (0− t2) = t1 + t2

(t1) + (t1 + t2) + (t2) = T

Optimizing Matrix Computations DSL for Optimizing Matrix Computations July 10, 2018 13 / 25

Tile Size Selection Model - Algorithm

Input: group G , cache size, inner tile size, inner dim, nDims
Output: Tile sizes of each dimension of G

1 Function ComputeTileSize(G, cache size, inner tile size, inner dim, nDims):
2 dim reuse [1...nDims] ← getDimReuse(G)
3 inner dim size ← getInnerDimSize(G)
4 tile sizes [inner dim] ← min (inner dim size, inner tile size)
5 mem access ← distinct memory references in G
6 reuse eqn ← getReuseEquation (mem access, dim reuse, inner dim,

tile size)
7 root ← floor(positive root(reuse eqn))
8 for each i ∈ nDims do
9 tile sizes [i] ← dim reuse[i] * root

10 endfor
11 return tile sizes

Optimizing Matrix Computations DSL for Optimizing Matrix Computations July 10, 2018 14 / 25

Intra-tile optimization

best-tile intra-tile-opt

0.14

5.1 · 10−2

E
x
e
c
u
ti
o
n

ti
m
e
(m

s)

Vectorization benefits performance

Performance benefits by making the inner-loop vectorizable

2.74× improvement over best performing tiled code.

Optimizing Matrix Computations DSL for Optimizing Matrix Computations July 10, 2018 15 / 25

Intra-tile optimization - Matmul

f o r (i n t i = 0 ; i <= NI ; i=i +1)
f o r (i n t j = 0 ; j <= NJ ; j=j +1)

f o r (i n t k = 0 ; k <= NK; k=k+1)
C [i] [j] = C [i] [j] + (A [i] [k]

∗ B [k] [j]) ;

dim s t v a score

i 0 1 false 4 -44
j 3 1 true 4 18
k 1 2 false 4 -6

loop k carries a dependence => Not parallel => Not vectorizable

loop i has non contiguous accesses for arrays C and A => Not
vectorizable

score = score + (2 ∗ s) + (4 ∗ t) + (8 ∗ v)− (16 ∗ (a− s − t))

loop j has the highest score and is selected as the inner-most
dimension

Optimizing Matrix Computations DSL for Optimizing Matrix Computations July 10, 2018 16 / 25

Intra-tile optimization - Matmul

f o r (i n t i = 0 ; i <= NI ; i=i +1)
f o r (i n t j = 0 ; j <= NJ ; j=j +1)

f o r (i n t k = 0 ; k <= NK; k=k+1)
C [i] [j] = C [i] [j] + (A [i] [k]

∗ B [k] [j]) ;

dim s t v a score

i 0 1 false 4 -44
j 3 1 true 4 18
k 1 2 false 4 -6

loop k carries a dependence => Not parallel => Not vectorizable

loop i has non contiguous accesses for arrays C and A => Not
vectorizable

score = score + (2 ∗ s) + (4 ∗ t) + (8 ∗ v)− (16 ∗ (a− s − t))

loop j has the highest score and is selected as the inner-most
dimension

Optimizing Matrix Computations DSL for Optimizing Matrix Computations July 10, 2018 16 / 25

Intra-tile optimization

Algorithm 1: Intra-tile Optimization
Input: group (G)
Output: Innermost dimension for each function in G

1 Function Intra-tile Optimization(G):
2 for each function (f) ∈ group (G) do
3 for each dimension (d) ∈ function (f) do
4 s ← getNumSpatialReuse(d , f)
5 t ← getNumTemporalReuse(d , f)
6 a ← getTotalAccess(d , f)
7 v ← isVectorizable(d , f)
8 score[d] ← score[d] +

(2 ∗ s) + (4 ∗ t) + (8 ∗ v)− (16 ∗ (a− s − t))
9 endfor

10 endfor
11 inner dim ← getDimWithMaxScore(score)
12 return inner dim

Optimizing Matrix Computations DSL for Optimizing Matrix Computations July 10, 2018 17 / 25

Mapping to function calls

Idiom Recognition stage - Traverse the AST

Allows to maintain backward compatibility

Map to libraries only when profitable

BLAS Routines

Mapped only when M ∗ N ∗ K ≥ (256)3

Obtained after experimental evaluation

FFTW: Always. Reduces complexity from

Always mapped to library call.
Reduces complexity from O(N2) to O(N log N)

Optimizing Matrix Computations DSL for Optimizing Matrix Computations July 10, 2018 18 / 25

Fusion for Reductions

1 f o r (i 1 = 0 ; i < NI ; i ++)
2 f o r (j 1 = 0 ; j < NJ ; j ++)
3 f o r (k1 = 0 ; k < NK; ++k)
4 tmp [i 1] [j 1] += A [i 1] [k1] ∗ B [k1] [j 1] ; \\S1
5 f o r (i 2 = 0 ; i < NI ; i ++)
6 f o r (j 2 = 0 ; j < NL ; j ++)
7 out [i 2] [j 2] = tmp [i 2] [j 2] + b [j 2] ; \\S2

RAW dependence on Line 4 by tmp[i1][j1]

RAW dependence between write of tmp[i1][j1] on Line 4 and read of
tmp[i2][j2] on Line 7

Dimension matching or Alignment is applied for S1 and S2

Fusion happens only if the alignment is successful

Alignment Vectors S1: [i1, j1, k1], S2: [i2, j2, -]

loops i1, i2 and j1, j2 are fused.

Optimizing Matrix Computations DSL for Optimizing Matrix Computations July 10, 2018 19 / 25

Fusion for Reductions

1 f o r (i 1 = 0 ; i < NI ; i ++)
2 f o r (j 1 = 0 ; j < NJ ; j ++)
3 f o r (k1 = 0 ; k < NK; ++k)
4 tmp [i 1] [j 1] += A [i 1] [k1] ∗ B [k1] [j 1] ; \\S1
5 f o r (i 2 = 0 ; i < NI ; i ++)
6 f o r (j 2 = 0 ; j < NL ; j ++)
7 out [i 2] [j 2] = tmp [i 2] [j 2] + b [j 2] ; \\S2

RAW dependence on Line 4 by tmp[i1][j1]

RAW dependence between write of tmp[i1][j1] on Line 4 and read of
tmp[i2][j2] on Line 7

Dimension matching or Alignment is applied for S1 and S2

Fusion happens only if the alignment is successful

Alignment Vectors S1: [i1, j1, k1], S2: [i2, j2, -]

loops i1, i2 and j1, j2 are fused.

Optimizing Matrix Computations DSL for Optimizing Matrix Computations July 10, 2018 19 / 25

Experimental Setup

Processors 2-socket Intel Xeon E5-2630 v3
Clock 2.40 GHz
Cores 16 (8 per socket)
Hyperthreading disabled
Private caches 64 KB L1 cache, 512 KB L2 cache
Shared cache 20,480 KB L3 cache
Memory 64 GB DDR4

Matlab version 9.3.0.713579 (R2017b)
Scipy version 1.0.0

Compiler Intel C/C++ (icc/icpc) 18.0.1
Compiler flags -O3 -xhost -qopenmp -fma -ipo
OS Linux kernel 3.10.0 (64-bit) (Cent OS 7.3)

Optimizing Matrix Computations Experimental Evaluation July 10, 2018 20 / 25

Benchmarks

PolyBench

blas computations from linear algebra benchmark

kernel computations from linear algebra benchmark

Digital Signal Processing

unwanted spectral filter: Removes noise in input signal

vuvuzela filter: Filters out vuvuzela noise from input signal

Image Processing

To compare our tile size model with state-of-art

Optimizing Matrix Computations Experimental Evaluation July 10, 2018 21 / 25

Performance Analysis - PolyBench

Speedup for EXTRALARGE Dataset

gemm gemver gesummv symm syr2k syrk trmm
0

50

100

150

3
8
.6
4
×

1
.3
7
×

1
.2
7
×

1
.4
4
×

2
7
.5

×

1
4
.7
7
×

4
3
.2
7
×

3
1
.6

×

0
.9
2
×

0
.9
9
×

3
.6

×

2
8
.8
8
×

1
4
.9
7
×

1
6
.9
2
×

1
2
9
.5
5
×

0
.9
1
×

1
.1
1
×

7
0
.7
2
×

1
3
7
.4
3
×

9
2
.4
4
×

7
9
.8
6
×

1
3
1
.7
8
×

1
.6
2
×

1
.5
6
×

7
0
.7
3
×

1
3
7
.7

×

9
2
.9
7
×

7
9
.9
3
×

Benchmarks

S
p
ee
d
u
p
w
.r
.t
P
ol
y
M
ag

e

Pluto
PPCG
BLAS
PolyMage-opt-BLAS

2mm 3mm atax bicg doitgen mvt GEOMEAN
0

20

40

60

80

100

120

4
4
.0
2
×

3
0
.4
4
×

1
.4
1
×

1
.1
7
×

4
.1
7
×

0
.8
9
×

6
.0
3
×

2
3
.7
6
×

2
3
.3
5
×

1
.2
1
×

1
.0
2
×

4
.6
2
×

0
.9
6
×

5
.2
5
×

1
2
1
.3
8
×

1
0
1
.3
3
×

0
.9
5
×

0
.9
8
×

0
× 0
.9
6
× 1
4
.7
1
×

1
2
2
.7
2
×

1
0
2
.9
7
×

4
.4
9
×

3
.3
8
×

4
3
.8
8
×

1
.1
8
×

2
1
.7
2
×

Benchmarks

S
p
ee
d
u
p
w
.r
.t
P
ol
y
M
ag

e

Mean Speedup

3.6× over Pluto

4.1× over PPCG

7.5× Polymage-unopt

39% over Intel MKL

Optimizing Matrix Computations Experimental Evaluation July 10, 2018 22 / 25

Performance Analysis - PolyBench

Speedup for EXTRALARGE Dataset

gemm gemver gesummv symm syr2k syrk trmm
0

5

10

15

20

9
.6
1
×

0
.6
5
×

0
.2
5
× 2
.0
8
×

5
.8
1
×

4
.3
8
×

7
.6
6
×

1
.9
4
×

0
.4
3
×

0
.2
4
×

1
.1
4
× 2
.9
8
×

1
.7
1
×

2
.2
2
×

1
1
.2
2
×

0
.4
5
×

0
.8
3
×

3
.7
7
×

1
×

1
×

5
.8

×

2
1
.0
6
×

0
.2

×

0
.4
7
×

3
.8
4
×

4
.4
2
×

3
.3
5
× 5
.7
2
×

Benchmarks

S
p
ee
d
u
p
w
.r
.t
P
ol
y
M
ag

e

Pluto
PPCG
BLAS
PolyMage-opt-BLAS

2mm 3mm atax bicg doitgen mvt GEOMEAN
0

5

10

5
.2
6
×

4
.9
4
×

0
.4
6
×

0
.4
2
×

0
.2
3
×

0
.6

× 1
.6

×

1
.6
9
×

1
.9

×

0
.3
7
×

0
.3
5
×

0
.2
3
×

0
.4
1
×

0
.8
4
×

6
.0
4
×

7
.8
3
×

0
.7
8
×

0
.9
6
×

0
.9
7
×

0
.9
6
×

1
.8
5
×

7
.7
9
× 8
.9

×

0
.6
9
×

0
.7
8
×

1
3
.6
1
×

0
.7
1
×

2
.5
9
×

Benchmarks

S
p
ee
d
u
p
w
.r
.t
P
ol
y
M
a
ge

Mean Speedup

3.6× over Pluto

4.1× over PPCG

7.5× Polymage-unopt

39% over Intel MKL

Optimizing Matrix Computations Experimental Evaluation July 10, 2018 23 / 25

Performance Analysis - DSP

Execution time for DSP benchmarks and scaling across cores

1 4 8 12 16

2

4

6

8

Number of threads

E
x
ec
u
ti
o
n
ti
m
e
(s
ec
on

d
s) PolyMage-FFT

scipy

matlab

PolyMage-opt-FFT

1 4 8 12 16

0.1

0.2

0.3

0.4

Number of threads
E
x
ec
u
ti
o
n
ti
m
e
(s
ec
on

d
s)

PolyMage-FFT

scipy

matlab

PolyMage-opt-FFT

Mean speed up of

7.7× over existing PolyMage optimizer,

5.1× over Intel’s Scipy and

1.9× over MATLAB

Optimizing Matrix Computations Experimental Evaluation July 10, 2018 24 / 25

Conclusion

A DSL approach to optimize Matrix Computations

Tile size selection model which is applicable for arbitrary affine access

Implemented a heuristic to map to function calls when profitable

Implemented an intra-tile optmization algorithm to enhance
auto-vectorization

PolyBench Benchmarks: Speedup of 3.6× over Pluto, 4.1× over
PPCG

DSP Benchmarks: speedup of 5.1× over Intel’s Scipy and 1.9× over
MATLAB

Optimizing Matrix Computations Conclusion July 10, 2018 25 / 25

	Introduction
	Motivation
	Objective
	Background
	DSL for Optimizing Matrix Computations
	Tile Size selection Model
	Intra-tile optimization
	Mapping to function calls
	Fusion for Reductions

	Experimental Evaluation
	Conclusion

