Optimizing Matrix Computations with PolyMage

Kumudha Narasimhan

Advisor : Dr. Uday Kumar Reddy B

Computer Science and Automation Indian Institute of Science Bengaluru, India

July 10, 2018

Overview

Introduction

Motivation

Objective

4 Background

5 DSL for Optimizing Matrix Computations

- Tile Size selection Model
- Intra-tile optimization
- Mapping to function calls
- Fusion for Reductions

6 Experimental Evaluation

Conclusion

Matrix computations are found in many domains:

- Scientific computing
 - Multi-resolution analysis kernel (MADNESS)(doitgen)
- Neural networks
 - Convolution operation is represented and matrix-matrix multiplication
 - Recurrent Neural networks consist of many matrix-vector multiplications
- Digital signal processing
 - convolution operations are used in low pass filters

These computations usually form the **bottleneck** in the applications and hence optimizing them will improve the performance of the application

Opimized Libraries

Optimizing Compilers PLUTO PPCG

LGen:

Image: Image:

Opimized Libraries

Optimizing Compilers PLUTO PPCG

LGen:

- Hand Optimized or Highly tuned.
- Customized for various architectures

- < A

Opimized Libraries

- Hand Optimized or Highly tuned.
- Customized for various architectures

Optimizing Compilers PLUTO PPCG

- Compiler performs architecture independent optimization
- Better productivity than libraries

LGen:

Opimized Libraries

- Hand Optimized or Highly tuned.
- Customized for various architectures

Optimizing Compilers PLUTO PPCG

- Compiler performs architecture independent optimization
- Better productivity than libraries

- Improves productivity
- Performs domain-specific optimizations

Opimized Libraries

- Hand Optimized or Highly tuned.
- Customized for various architectures
- Optimized only large matrix sizes
- Trade-off: Productivity for Generality
- No reuse across library calls Optimizing Matrix Computations

Optimizing Compilers PLUTO PPCG

- Compiler performs architecture independent optimization
- Better productivity than libraries

- Improves productivity
- Performs domain-specific optimizations

Opimized Libraries

- Hand Optimized or Highly tuned.
- Customized for various architectures
- Optimized only large matrix sizes
- Trade-off: Productivity for Generality
- No reuse across librarv calls

Optimizing Compilers PLUTO PPCG

- Compiler performs architecture independent optimization
- Better productivity than libraries
- Manual tuning of tile sizes
- Does not map to library calls

- Improves productivity
- Performs domain-specific optimizations

Image: A matrix

Optimizing Matrix Computations

Motivation

Opimized Libraries

- Hand Optimized or Highly tuned.
- Customized for various architectures
- Optimized only large matrix sizes
- Trade-off: Productivity for Generality
- No reuse across librarv calls

Optimizing Compilers PLUTO PPCG

- Compiler performs architecture independent optimization
- Better productivity than libraries
- Manual tuning of tile sizes
- Does not map to library calls

- Improves productivity
- Performs domain-specific optimizations
- Naively map to library calls
- Target only small matrices
- Auto-tuning for locality

optimizations

Optimizing Matrix Computations

Motivation

July 10, 2018 4 / 25

- Perform Data Locality Optimizations
- Map to library calls
- Remove Manual or Auto-tuning
- Storage Optimization
- High level language constructs

- Perform Data Locality Optimizations
- Map to library calls
- Remove Manual or Auto-tuning
- Storage Optimization : Available in Polymage
- High level language constructs: Available in Polymage

PolyMage is Domain Specific Language which supports optmizations for:

- stencil operations
- point-wise operations
- down-sample and up-sample operations

Existing PolyMage specification

```
# Parameters
N = Parameter(Int, "N")
# variables
i = Variable (Int, "i")
i = Variable(Int, "i")
k = Variable(Int, "k")
# Input
A = Image(Double, "A", [N, N])
B = Image(Double, "B", [N, N])
# Domain/ Intervals
n_dom = Interval(Int, 0, N-1)
# Matrix multiplication operation
C = Reduction(([i,j], [n_dom, n_dom])),
               ([i, j, k],
                [n_dom,n_dom,n_dom]),
               Double, "C")
C.defn = [Reduce(C(i, j)),
                  A(i, k) * B(k, j),
                  Op. Sum)]
```

→ ∃ →

Language Specification - Matmul Example

Existing PolyMage specification

```
# Parameters
N = Parameter(Int, "N")
# variables
i = Variable (Int, "i")
i = Variable(Int, "i")
k = Variable(Int, "k")
# Input
A = Image(Double, "A", [N, N])
B = Image(Double, "B", [N, N])
# Domain/ Intervals
n_dom = Interval(Int, 0, N-1)
# Matrix multiplication operation
C = Reduction(([i,j], [n_dom, n_dom])),
               ([i, j, k],
                [n_dom, n_dom, n_dom]),
               Double, "C")
C.defn = [Reduce(C(i, j)),
                  A(i, k) * B(k, j),
                  Op. Sum)]
```

New PolyMage specification

Parameters
N = Parameter(Int,"N")

イロト 不得下 イヨト イヨト

Matrix multiplication C = A * B

Language Specification

Overloaded Operators introduced

Operator	Usage	Description
+ - *	$f A+B \ A-B \ A*B$	Point-wise addition Point-wise subtraction Multiplication

Overloaded Operators introduced

Operator	Usage	Description
+	$\mathbf{A} + \mathbf{B}$	Point-wise addition
-	$\mathbf{A} - \mathbf{B}$	Point-wise subtraction
*	$\mathbf{A} * \mathbf{B}$	Multiplication

Functions introduced

Function name with usage	Description
elementwise_mul(A , B) scalar_mul(A , α) transpose(A)	Element-wise multiplication Matrix/Vector Scalar multiplication Transpose
symm(matA, matB, matC, M, N, α, β)	Symmetric Matrix multiply
syr2k(matA, matB, matC, lpha, eta) syrk(matA, matC, lpha, eta)	Symmetric rank-2k operations Symmetric rank-k operations
$trmm(extbf{matA}, extbf{matB},lpha,eta)$	Triangular Matrix multiply

10 / 25

Tile Size Selection Model

- Tile size has an effect on performance
- $\bullet~3.57\times$ improvement between default and best tile size for matmul

Tile Size Selection Model - Matmul

- Based on dimensional reuse along a dimension
- Let t_i, t_j and t_k be tile sizes for loops i, j and k respectively
- Tile Volume is given by:

$$t_i * t_j + t_j * t_k + t_k * t_i = T.$$
 (1)

• Let tile size for dim *i* be $t_i = \gamma_i * t$ where γ_i is the dimensional reuse

Tile Size Selection Model - Matmul

- Based on dimensional reuse along a dimension
- Let t_i, t_j and t_k be tile sizes for loops i, j and k respectively
- Tile Volume is given by:

$$t_i * t_j + t_j * t_k + t_k * t_i = T.$$
 (1)

• Let tile size for dim *i* be $t_i = \gamma_i * t$ where γ_i is the dimensional reuse $(\gamma_i * \gamma_j + \gamma_j * \gamma_k + \gamma_k * \gamma_i) * t^2 = \mathbf{C}.$ (2) $\gamma_i = 0.5, \gamma_j = 0.5, \gamma_k = 1$ $(0.5 * t) * 256 + 256 * (0.5 * t) + (1.0 * 0.5) * t^2 = (32768/8)$ (3) $0.5 * t^2 + 256 * t - 4096 = 0$ (4)

 $t_i = 7, t_j = 256 \text{ and } t_k = 15.$

access	distinct accesses	reuse equation
a[i] a[α * i]	ti t:	$\gamma_i * t$ $\gamma_i * t$
a[i+j]	$t_i + t_j$	$(\gamma_i + \gamma_j) * t$
a[ı — J] a[i][j]	$t_i + t_j$ $t_i * t_j$	$egin{array}{lll} (\gamma_i+\gamma_j)*t \ (\gamma_i*\gamma_j)*t \end{array}$

access	distinct accesses	reuse equation
a[i]	ti	$\gamma_i * t$
$a[\alpha * i]$	t_i	$\gamma_i * t$
a[i+j]	$t_i + t_j$	$(\gamma_i + \gamma_j) * t$
a[i — j]	$t_i + t_j$	$(\gamma_i + \gamma_j) * t$
a[i][j]	$t_i * t_j$	$(\gamma_i * \gamma_j) * t$

DSP Code Snippet

```
for (int ii =0;(ii <=t1); ii ++)
for (int jj =0;(jj <=t2); jj ++)
ybs[ii]+=yds[(M + ii) - jj]
* window[jj];</pre>
```

access	distinct accesses	reuse equation
$a[i]$ $a[\alpha * i]$ $a[i + j]$ $a[i - j]$ $a[i][i]$	$egin{array}{c} t_i \ t_j \ t_i + t_j \ t_i + t_j \ t_i + t_j \ t_i + t_j \ t_i st st_i \ st_i st st_i \end{array}$	$ \begin{array}{c} \gamma_i * t \\ \gamma_i * t \\ (\gamma_i + \gamma_j) * t \\ (\gamma_i + \gamma_j) * t \\ (\gamma_i * \gamma_i) * t \end{array} $

DSP Code Snippet

• Let tile size of *i* be *t*1 and *j* be *t*2

access	distinct accesses	reuse equation
$a[i]$ $a[\alpha * i]$ $a[i + j]$ $a[i - j]$ $a[i][j]$	$egin{array}{c} t_i \ t_i \ t_i + t_j \end{array}$	$ \begin{array}{c} \gamma_i * t \\ \gamma_i * t \\ (\gamma_i + \gamma_j) * t \\ (\gamma_i + \gamma_j) * t \\ (\gamma_i * \gamma_j) * t \end{array} $

DSP Code Snippet

- Let tile size of *i* be *t*1 and *j* be *t*2
- Memory required by ybs is t1 and window is t2

access	distinct accesses	reuse equation	DSP Code Snippet
$a[i]$ $a[\alpha * i]$ $a[i + j]$ $a[i - j]$ $a[i][j]$	$egin{array}{ccc} t_i & t_i $	$ \begin{array}{c} \gamma_i * t \\ \gamma_i * t \\ (\gamma_i + \gamma_j) * t \\ (\gamma_i + \gamma_j) * t \\ (\gamma_i * \gamma_j) * t \end{array} $	<pre>for (int ii=0;(ii<=t1); ii++) for (int jj=0;(jj<=t2); jj++) ybs[ii]+=yds[(M + ii) - jj] * window[jj];</pre>

- Let tile size of *i* be *t*1 and *j* be *t*2
- Memory required by *ybs* is *t*1 and *window* is *t*2
- Memory required by yds is calculated as (t1-0) (0-t2) = t1 + t2

access	distinct accesses	reuse equation	DSP Code Snippet
$a[i]$ $a[\alpha * i]$ $a[i + j]$ $a[i - j]$ $a[i][j]$	$egin{array}{ccc} t_i & t_i $	$ \begin{array}{c} \gamma_i * t \\ \gamma_i * t \\ (\gamma_i + \gamma_j) * t \\ (\gamma_i + \gamma_j) * t \\ (\gamma_i * \gamma_j) * t \end{array} $	<pre>for (int ii=0;(ii<=t1);ii++) for (int jj=0;(jj<=t2);jj++ ybs[ii]+=yds[(M + ii) - j</pre>

- Let tile size of *i* be *t*1 and *j* be *t*2
- Memory required by ybs is t1 and window is t2
- Memory required by yds is calculated as (t1-0) (0-t2) = t1 + t2
- (t1) + (t1 + t2) + (t2) = T

	Input: group G, cache_size, inner_tile_size, inner_dim, nDims
	Output : Tile sizes of each dimension of G
1	<pre>Function ComputeTileSize(G, cache_size, inner_tile_size, inner_dim, nDims):</pre>
2	$dim_reuse [1nDims] \leftarrow getDimReuse(G)$
3	$inner_dim_size \leftarrow getInnerDimSize(G)$
4	<i>tile_sizes</i> [<i>inner_dim</i>] ← min (<i>inner_dim_size</i> , <i>inner_tile_size</i>)
5	$mem_{\perp}access \leftarrow distinct memory references in G$
6	<i>reuse_eqn</i> \leftarrow getReuseEquation (<i>mem_access</i> , <i>dim_reuse</i> , <i>inner_dim</i> ,
	tile_size)
7	$root \leftarrow floor(positive_root(reuse_eqn))$
8	for each $i \in nDims$ do
9	$ $ tile_sizes [i] \leftarrow dim_reuse[i] * root
0	endfor
1	return <i>tile_sizes</i>

Intra-tile optimization

- Vectorization benefits performance
- Performance benefits by making the inner-loop vectorizable
- $2.74 \times$ improvement over best performing tiled code.

- loop k carries a dependence => Not parallel => Not vectorizable
- loop *i* has non contiguous accesses for arrays C and A => Not vectorizable

for (int $i = 0$; $i \le NI$; $i=i+1$)	dim	S	t	v	а	score
for (int $j = 0; j \le NJ; j=j+1$) for (int $k = 0; k \le NK; k=k+1$)	i	0	1	false	4	-44
C[i][j] = C[i][j] + (A[i][k])	j	3	1	true	4	18
* B[k][j]);	k	1	2	false	4	-6

- loop k carries a dependence => Not parallel => Not vectorizable
- loop *i* has non contiguous accesses for arrays C and A => Not vectorizable
- score = score + (2 * s) + (4 * t) + (8 * v) (16 * (a s t))
- loop *j* has the highest score and is selected as the inner-most dimension

Algorithm 1: INTRA-TILE OPTIMIZATION

Input: group (G)

Output: Innermost dimension for each function in G

```
1 Function Intra-tile Optimization(G):
```

```
for each function (f) \in group(G) do
2
             for each dimension (d) \in function (f) do
3
                   s \leftarrow getNumSpatialReuse(d, f)
4
                   t \leftarrow getNumTemporalReuse(d, f)
5
                   a \leftarrow getTotalAccess(d, f)
6
                   v \leftarrow isVectorizable(d, f)
7
                   score[d] \leftarrow score[d] +
8
                                (2 * s) + (4 * t) + (8 * v) - (16 * (a - s - t))
             endfor
9
        endfor
10
        inner_dim \leftarrow getDimWithMaxScore(score)
11
        return inner dim
12
```

→ ∃ →

- Idiom Recognition stage Traverse the AST
 - Allows to maintain backward compatibility
- Map to libraries only when profitable
- BLAS Routines
 - Mapped only when $M * N * K \ge (256)^3$
 - Obtained after experimental evaluation
- FFTW: Always. Reduces complexity from
 - Always mapped to library call.
 - Reduces complexity from $\mathcal{O}(N^2)$ to $\mathcal{O}(N \log N)$

Fusion for Reductions

Fusion for Reductions

- RAW dependence on Line 4 by *tmp*[*i*1][*j*1]
- RAW dependence between write of *tmp*[*i*1][*j*1] on Line 4 and read of *tmp*[*i*2][*j*2] on Line 7
- Dimension matching or Alignment is applied for S1 and S2
- Fusion happens only if the alignment is successful
- Alignment Vectors S1: [i1, j1, k1], S2: [i2, j2, -]
- loops *i*1, *i*2 and *j*1, *j*2 are fused.

Processors	2-socket Intel Xeon E5-2630 v3
Clock	2.40 GHz
Cores	16 (8 per socket)
Hyperthreading	disabled
Private caches	64 KB L1 cache, 512 KB L2 cache
Shared cache	20,480 KB L3 cache
Memory	64 GB DDR4
Matlab version	9.3.0.713579 (R2017b)
Scipy version	1.0.0
Compiler	Intel C/C++ (icc/icpc) 18.0.1
Compiler flags	-O3 -xhost -qopenmp -fma -ipo
OS	Linux kernel 3.10.0 (64-bit) (Cent OS 7.3)

Image: A math a math

2

PolyBench

- blas computations from linear algebra benchmark
- kernel computations from linear algebra benchmark

Digital Signal Processing

- unwanted spectral filter: Removes noise in input signal
- vuvuzela filter: Filters out vuvuzela noise from input signal

Image Processing

• To compare our tile size model with state-of-art

Performance Analysis - PolyBench

Speedup for EXTRALARGE Dataset

Mean Speedup

- $3.6 \times$ over Pluto
- $4.1 \times$ over PPCG
- 7.5× Polymage-unor
- 39% over Intel MKL

Optimizing Matrix Computations

July 10, 2018 22 / 25

Performance Analysis - PolyBench

Speedup for EXTRALARGE Dataset

Mean Speedup

- $3.6 \times$ over Pluto
- $4.1 \times$ over PPCG
- 7.5× Polymage-unor
- 39% over Intel MKL

Optimizing Matrix Computations

July 10, 2018 23 / 25

Performance Analysis - DSP

Execution time for DSP benchmarks and scaling across cores

Mean speed up of

- $7.7 \times$ over existing PolyMage optimizer,
- $5.1 \times$ over Intel's Scipy and
- $1.9 \times$ over MATLAB

- A DSL approach to optimize Matrix Computations
- Tile size selection model which is applicable for arbitrary affine access
- Implemented a heuristic to map to function calls when profitable
- Implemented an intra-tile optmization algorithm to enhance auto-vectorization
- \bullet PolyBench Benchmarks: Speedup of 3.6 \times over Pluto, 4.1 \times over PPCG
- \bullet DSP Benchmarks: speedup of 5.1 \times over Intel's Scipy and 1.9 \times over MATLAB