
Improving performance of SYCL applications on 
CPU architectures using LLVM-directed compilation flow

Pietro Ghiglio, Uwe Dolinsky, Mehdi Goli, Kumudha Narasimhan

2nd April 2022



© 2022 Codeplay Software Ltd.2

Enabling AI & HPC 
to be Open, Safe & 

Accessible to All
Markets

High Performance Compute (HPC)
Automotive ADAS, IoT, Cloud Compute

Smartphones & Tablets
Medical & Industrial

Technologies: Artificial Intelligence
Vision Processing
Machine Learning
Big Data Compute

Company

Leaders in enabling high-performance 
software solutions for new AI processing 
systems

Enabling the toughest processors with tools 
and middleware based on open standards

Established 2002 in Scotland with ~80 
employees

Products

Integrates all the industry 
standard technologies needed 
to support a very wide range 
of AI and HPC

The heart of Codeplay's 
compute technology enabling 
OpenCL™, SPIR-V™, HSA™ and 
Vulkan™

C++ platform via the SYCL™
open standard, enabling vision 
& machine learning e.g. 
TensorFlow™

And many more!

Partners



© 2022 Codeplay Software Ltd.3

1. Motivation: Why SYCL on CPU?

2. Introduction to SYCL and its compilation flow.

3. SYCL host compilation.

4. Performance Results.

5. Conclusions and future work.

Agenda



© 2022 Codeplay Software Ltd.4

• SYCL mostly targets heterogeneous systems with accelerators, 
but many systems have CPU [only].

• CPUs used alongside the main accelerator.

• Achieve performance portability of SYCL application on CPUs.

• Allow to support platforms for which an OpenCL 
implementation is not available.

• Remove overheads introduced by OpenCL/other backends.

Motivation: Why SYCL on CPU?



© 2022 Codeplay Software Ltd.5

SYCL: An open standard for portable software acceleration.

• C++ based open standard API introduced by Khronos.

• Provides single source programming model for 
heterogenous systems.

• Abstraction layer initially designed on top of OpenCL, 
now supports several different backends.

• Multiple implementations:

• ComputeCpp (Codeplay)

• DPC++ (Intel)

• triSYCL (AMD)

• hipSYCL (Heidelberg University)

• neoSYCL (Tohoku University)

https://sycl.tech/ https://www.khronos.org/sycl/

https://sycl.tech/
https://www.khronos.org/sycl/


© 2022 Codeplay Software Ltd.6

• SYCL allows us to target CPUs as accelerators, depending on 
the backend, e.g. OpenCL can JIT compile SPIR/SPIR-V into 
x86 code.

• Benefits from offline compilation.

• SYCL host device allows us to compile any SYCL program with 
any C++-compliant compiler (no need for device compiler).
• Usually used as a fallback mechanism when other backends are not available –

performances not guaranteed.

Targeting SYCL to CPUs



© 2022 Codeplay Software Ltd.7

General SYCL compilation flow

• Same C++ code is compiled twice.

• Device compiler extracts kernel code, lowers 
it to an intermediate representation(e.g. 
SPIR-V), bundles it into the integration 
header.

• Integration headers are included when host 
compiler re-compiles the source code.

• Final executable contains IR bundle, runtime 
backend JIT compiles it.

• Support for offline compilation (pre-compile 
the IR bundle, no JIT compilation required).

• One option to ComputeCPP does all these 
steps internally.

ComputeCPP: compute++ helloworld.cpp -fsycl



© 2022 Codeplay Software Ltd.8

• CPU-specific SYCL backend.

• Offline target, direct substitute of OpenCL/other backends.

• Allows to efficiently execute SYCL applications on CPUs, 
without any other dependency than ComputeCpp.

• Performs same set of program transformations and 
optimizations as an OpenCL implementation, but inside the 
SYCL device compiler.

New SYCL host compilation



© 2022 Codeplay Software Ltd.9

New SYCL host compilation flow

• Same two stage compilation as the usual 
SYCL flow.

• Device compiler doesn't emit SPIR-V, but 
emits LLVM-IR with the same target triple 
as the host code.

• Using a clang-based host compiler, we can 
llvm-link together the host and the device 
code, and then optimize the whole 
translation unit.

• Acts as an offline target for SYCL, allows us 
to handle the whole SYCL application like 
a standard CPU application.

• Implemented in ComputeCpp's driver so 
that it's transparent to the user.

ComputeCPP: compute++ helloworld.cpp -sycl-driver –sycl-target=host



© 2022 Codeplay Software Ltd.10

• Integrated a Whole Function Vectorizer in ComputeCpp, in 
order to bypass OpenCL and perform it offline.

• Reduces the number of threads required to execute the 
workload – packs more work into one thread.

• Deal with complex kernel code including barriers.

Whole Function Vectorization



© 2022 Codeplay Software Ltd.11

Original kernel Vectorized kernel
define void @SimpleVadd(i32*, i32*, i32*) {

%5 = call i64 @_Z13get_global_idj(i32 0)

%6 = getelementptr inbounds i32, i32* %1, i64 
%5

%7 = load i32, i32* %6, align 4

%8 = getelementptr inbounds i32, i32* %2, i64 
%5

%9 = load i32, i32* %8, align 4

%10 = add nsw i32 %9, %7

%11 = getelementptr inbounds i32, i32* %0, 
i64 %5

store i32 %10, i32* %11, align 4

ret void

}

define void @SimpleVadd_v16(i32*, i32*, i32*) {

%5 = call i64 @_Z13get_global_idj(i32 0)

%6 = getelementptr inbounds i32, i32* %1, i64 %5

%7 = bitcast i32* %6 to <16 x i32>*

%8 = load <16 x i32>, <16 x i32>* %7, align 4

%9 = getelementptr inbounds i32, i32* %2, i64 %5

%10 = bitcast i32* %9 to <16 x i32>*

%11 = load <16 x i32>, <16 x i32>* %10, align 4

%12 = add nsw <16 x i32> %11, %8

%13 = getelementptr inbounds i32, i32* %0, i64 %5

%14 = bitcast i32* %13 to <16 x i32>*

store <16 x i32> %12, <16 x i32>* %14, align 4

ret void

}

Whole Function Vectorization - Example



© 2022 Codeplay Software Ltd.12

• Benchmarks: BabelStream + Matrix Multiply from 
ComputeCpp-SDK.

• Target hardware:

Experiment setup

Vendor Processor Frequency No. Cores Memory OpenCL driver 
version

Intel SkyLake (i7-6700) 4.20 GHz 4 32 GB DDR4 18.1.0.0920

Intel CoffeeLake (i7-8700) 4.00 GHz 8 32 GB DDR4 2021.12.9.0.24

Cavium ThunderX 88XX 2.00 GHz 48 32 GB DDR4 ComputeAorta
1.65

AMD EPYC 7402 2.80 GHz 48 256 GB DDR4 PoCL 1.8



© 2022 Codeplay Software Ltd.13

Results - BabelStream
Speedup of Host compilation vs OpenCL

• ComputeCpp as SYCL implementation.

• Intel SkyLake – Intel OpenCL.

• Intel CoffeLake – Intel OpenCL.

• ARM ThunderX – ComputeAorta.

• AMD Epyc – PoCL.

• Performances on par with OpenCL for 
memory-bound kernels.

• Speed-up on compute-bound dot kernel.

• Outlier: 12x speed-up on AMD dot: tuning 
vector width reported that the 
unvectorized kernel performs better on 
AMD. Due to different vector instructions 
emitted by the backend.



© 2022 Codeplay Software Ltd.14

Results – Other SYCL implementations
Speedup of Host compilation vs OpenCL and OpenMP

• DPC++ using Intel OpenCL.

• hipSYCL using OpenMP backend.

• Same outlier on AMD.

Performance Comparisons

• Performance for host compilation is 
comparable to DPC++ + Intel OpenCL.

• Performance for host compilation faster
than hipSYCL's OpenMP backend.



© 2022 Codeplay Software Ltd.15

Architecture Default OpenCL [s] SYCL Host Compilation [s] Speedup

Intel SkyLake 0.834 0.742 1.12x

Intel CoffeeLake 0.512 0.434 1.18x

Cavium ThunderX 1.519 1.089 1.39x

AMD Epyc 0.108 0.66 1.63x

Results – Matrix Multiply

Architecture Compiler Baseline SYCL Host Compilation Speedup

Intel SkyLake DPC++ 0.581 0.599 0.97x

Intel CoffeeLake DPC++ 0.415 0.416 1x

AMD HipSYCL 0.080 0.066 1.21x



© 2022 Codeplay Software Ltd.16

• Auto-tuning for compile time and runtime parameters 
(number of threads, work-group size …).

• Allow bundling intermediate representation in integration 
header, together with CPU-specific offline compiled kernels.

• Improve SYCL runtime, exposing more API implementations 
to the compiler to improve performances.

Future Work



© 2022 Codeplay Software Ltd.17

• Demonstrates acceleration of SYCL code on CPUs without 
requiring OpenCL backend.

• Added a configurable vectorization pass to support different 
types of CPUs.

• Comparable performance to state-of-the-art OpenCL 
implementation.

Conclusion



/codeplaysoft@codeplaysoft codeplay.com

Thank You


