® codeplay”
Enabling Al to be Open, Safe & Accessible to All

Improving performance of SYCL applications on
CPU architectures using LLVM-directed compilation flow

Pietro Ghiglio, Uwe Dolinsky, Mehdi Goli, Kumudha Narasimhan

2" April 2022

Company Partners

SYNoPSYs
CEVA CEI imagination

ENESAS
? KNG N s

Leaders in enabling high-performance |nte| anm’z‘)com.

. . Nt
software solutions for new Al processing
systems

Enabling the toughest processors with tools
and middleware based on open standards

Sy

Established 2002 in Scotland with ~80 o’ ® codeplay’ — receery] ‘ I({)AK Argonne &
e m ployees _ EREELEY Lﬁ = IDGE MATIONAL LABORATORY

Y,
Enabling Al & HPC /'

National L'.lhumlur'\

And many more!

Products «& tobe Open, Safe &

' ra Markets
Accessibleto All 4,

““Acoran .
High Performance Compute (HPC)
Automotive ADAS, IoT, Cloud Compute
Smartphones & Tablets

Integrates all the industry
standard technologies needed
to supportavery wide range

of Aland HPC Medical & Industrial
Technologies: Artificial Intelligence
A ComputeAorta C ComputeCpp & - £
Vision Processing
The heart of Codeplay's C++ platform via the SYCL™ ; :
compute technology enabling open standard, enabling vision MaCh'ne Learning
OpenCL™, SPIR-V™, HSA™ and & machine learning e.g. B|g Data Com pute
Vulkan™ TensorFlow™

#® codeplay”’ © 2022 Codeplay Software Ltd.

Agenda

Motivation: Why SYCL on CPU?
Introduction to SYCL and its compilation flow.

SYCL host compilation.
Performance Results.
Conclusions and future work.

Uilogs W =

#® codeplay”’ © 2022 Codeplay Software Ltd.

Motivation: Why SYCL on CPU?

* SYCL mostly targets heterogeneous systems with accelerators,
but many systems have CPU [only].

* CPUs used alongside the main accelerator.
* Achieve performance portability of SYCL application on CPUs.

* Allow to support platforms for which an OpenCL
implementation is not available.

* Remove overheads introduced by OpenCL/other backends.

#® codeplay”’ © 2022 Codeplay Software Ltd.

SYCL: An open standard for portable software acceleration.

e (C++ based open standard APl introduced by Khronos

e Provides single source programming model for
heterogenous systems. Y I

e Abstraction layer initially designed on top of OpenCL, ™
now supports several different backends.

 Multiple implementations:

* ComputeCpp (Codeplay)
* DPC++ (Intel)

* triSYCL (AMD) h ®
* hipSYCL (Heidelberg University) K H R\) N o s

* neoSYCL (Tohoku University) G ROWUP

https://sycl.tech/ https://www.khronos.org/sycl/

#® codeplay”’ © 2022 Codeplay Software Ltd.

https://sycl.tech/
https://www.khronos.org/sycl/

argeting SYCL to CPUs

 SYCL allows us to target CPUs as accelerators, depending on
the backend, e.g. OpenCL can JIT compile SPIR/SPIR-V into
X86 code.

* Benefits from offline compilation.

e SYCL host device allows us to compile any SYCL program with
any C++-compliant compiler (no need for device compiler).

e Usually used as a fallback mechanism when other backends are not available —
performances not guaranteed.

#® codeplay”’ © 2022 Codeplay Software Ltd.

General SYCL compilation flow

e Same C++ code is compiled twice.

C++ source
* Device compiler extracts kernel code, lowers

it to an intermediate representation (e.g.
SPIR-V), bundles it into the integration

header.

Host code

CPU

Integration compiler
Header

* Integration headers are included when host
compiler re-compiles the source code.

C++
» ComputeCpp

combine

device
binary

* Final executable contains IR bundle, runtime o
backend JIT compilesit. (kernel’)

Device code
SPIR/
SPIR-V

device

compiler

* Support for offline compilation (pre-compile
the IR bundle, no JIT compilation required).

* One option to ComputeCPP does all these
stepsinternally.

ComputeCPP: compute++ helloworld.cpp -fsycl

#® codeplay”’ © 2022 Codeplay Software Ltd.

New SYCL host compilation

e CPU-specific SYCL backend.
 Offline target, direct substitute of OpenCL/other backends.

* Allows to efficiently execute SYCL applications on CPUs,
without any other dependency than ComputeCpp.

* Performs same set of program transformations and
optimizations as an OpenCL implementation, but inside the
SYCL device compiler.

#® codeplay”’ © 2022 Codeplay Software Ltd.

New SYCL host compilation flow

 Same two stage compilation as the usual
SYCL flow. c g . file . tool

* Device compiler doesn't emit SPIR-V, but > cPU <=
Integration |:> compiler lfl> n

Host code

emits LLVM-IR with the same target triple Hoarer

as the host code. Chs
» ComputeCpp
e Using a clang-based host compiler, we can Device

code
Host +
Device code llvm-link device cPU
(LLVM-IR) +opt optimized compiler
IR

llvm-link together the host and the device (“kernel”)
code, and then optimize the whole
translation unit.

e Acts as an offline target for SYCL, allows us
to handle the whole SYCL application like

a standard CPU application. ComputeCPP: compute++ helloworld.cpp -sycl-driver—sycl-target=host

* Implemented in ComputeCpp's driver so
that it's transparent to the user.

#® codeplay”’ © 2022 Codeplay Software Ltd.

Whole Function Vectorization
* Integrated a Whole Function Vectorizer in ComputeCpp, in
order to bypass OpenCLand perform it offline.

e Reduces the number of threads required to execute the
workload — packs more work into one thread.

* Deal with complex kernel code including barriers.

#® codeplay”’ © 2022 Codeplay Software Ltd.

Whole Function Vectorization - Example

Original kernel

define void @Simplevadd(i32*, i32*, i32%*) {

%5 = call i64 @ Z1l3get global idj(i32 9)
y5%6 = getelementptr inbounds 132, i32* %1, i64
%7 = load 132, 132* %6, align 4

%8 = getelementptr inbounds 132, i32* %2, i64

%9 = load 132, i32* %8, align 4
%10 = add nsw 132 %9, %7

%11 = getelementptr inbounds i32, i32* %@,
i64 %5

store 132 %10, i32* %11, align 4
ret void

#® codeplay”’

Vectorized kernel

define void @SimpleVadd v16(i32*, i32*, i32*) {
%5 = call i64 @ Z13get global idj(i32 0)
%6 = getelementptr inbounds i32, i32* %1, i64 %5
%7 = bitcast i32* %6 to <16 x 132>*
%8 = load <16 x 132>, <16 x 1i32>* %7, align 4
%9 = getelementptr inbounds 132, i32* %2, i64 %5
%10 = bitcast 132* %9 to <16 x i32>*
%11 = load <16 x 132>, <16 x 132>* %10, align 4
%12 = add nsw <16 x 132> %11, %8
%13 = getelementptr inbounds 132, i32* %@, i64 %5
%14 = bitcast i32* %13 to <16 x 1i32>*
store <16 x 132> %12, <16 x 132>* %14, align 4
ret void

}

© 2022 Codeplay Software Ltd.

Experiment setup

* Benchmarks: BabelStream + Matrix Multiply from
ComputeCpp-SDK.

* Target hardware:

Intel SkyLake (i7-6700) 4.20 GHz 4 32 GB DDR4 18.1.0.0920

Intel CoffeelLake (i7-8700) 4.00 GHz 8 32 GB DDR4 2021.12.9.0.24

Cavium ThunderX 88XX 2.00 GHz 48 32 GB DDR4 ComputeAorta
1.65

AMD EPYC 7402 2.80 GHz 48 256 GB DDR4 PoCL 1.8

#® codeplay”’ © 2022 Codeplay Software Ltd.

Results - BabelStream
Speedup of Host compilation vs OpenCL

* ComputeCpp as SYCL implementation.
* Intel SkyLake — Intel OpenCL.

* Intel CoffeLake —Intel OpenCL.

* ARM ThunderX — ComputeAorta.

* AMD Epyc — PoCL.

e Performances on parwith OpenCL for
memory-bound kernels.

e Speed-up on compute-bound dot kernel.

* Qutlier: 12x speed-up on AMD dot: tuning
vector width reported that the
unvectorized kernel performs better on
AMD. Due to different vector instructions
emitted by the backend.

#® codeplay”’

12

10

Speedup

X
o0
N
(o]
i Copy =
0o Mul
(0Add
[0 Triad
lEDot
BB Geomean
X X
X X X X5 X X X X X o X %X X x x B
233833 CEEERE gya3-s ECk B
SSSo o‘o:c'c'ji o'o'ocj—"—‘ S
Intel SkyLake Intel CoffeeLake ARM ThunderX AMD

BabelStream Benchmark

© 2022 Codeplay Software Ltd.

Results — Other SYCL implementations
Speedup of Host compilation vs OpenCL and OpenMP

* DPC++ usingIntel OpenCL. ¢
C‘O_
* hipSYCL using OpenMP backend. 18 Copy =
« Sameoutlier on AMD. 12 9 g v
J0Add
10 00 Triad
Performance Comparisons lEDot
g“ 81 BB Geomean
* Performance for host compilation is 5
comparable to DPC+++ Intel OpenCL. ;5; 6
* Performance for host compilation faster A .
than hipSYCL's OpenMP backend. XL X =
ol 833383 =EEEEL S m
OO0 Y=Y =Y=F=!
L ETTE IR [

SkyLake(DPC++) CoffeeLake(DPC++) AMD(HipSYCL)

#® codeplay”’ © 2022 Codeplay Software Ltd.

Results — Matrix Multiply

Intel SkyLake 0.834 0.742 1.12x
Intel Coffeelake 0.512 0.434 1.18x
Cavium ThunderX 1.519 1.089 1.39x
AMD Epyc 0.108 0.66 1.63x
Intel SkyLake DPC++ 0.581 0.599 0.97x
Intel CoffeelLake DPC++ 0.415 0.416 1x
AMD HipSYCL 0.080 0.066 1.21x

#® codeplay”’ © 2022 Codeplay Software Ltd.

“uture Work

e Auto-tuning for compile time and runtime parameters
(number of threads, work-group size ...).

* Allow bundling intermediate representation in integration
header, together with CPU-specific offline compiled kernels.

* Improve SYCL runtime, exposing more AP| implementations
to the compiler to improve performances.

#® codeplay”’ © 2022 Codeplay Software Ltd.

Conclusion

 Demonstrates acceleration of SYCLcode on CPUs without
requiring OpenCL backend.

e Added a configurable vectorization pass to support different
types of CPUs.

e Comparable performance to state-of-the-art OpenCL
iImplementation.

#® codeplay”’ © 2022 Codeplay Software Ltd.

® codeplay’

Enabling Al to be Open, Safe & Accessible to All

Thank You

@codeplaysoft /codeplaysoft codeplay.com

