Evaluating Performance Overheads in
Program execution of Scripting Languages
under Virtual Machine Environment

Kumudha K N
kumudha.kn@csa.iisc.ernet.in

Shilpa Babalad
shilpab@ssl.serc.iisc.ernet.in

December 11, 2015

Abstract

Programmer productivity is gaining importance over optimized ex-
ecution. Hence, many scripting languages or dynamic languages have
gained popularity in the recent years. Scripting languages are widely
used among statisticians and data miners for developing statistical soft-
ware and data analysis. These languages are popular for their ease of
use and development. They are run on virtual machines which use
either an interpreter or are compiled to bytecodes, these are compiled
just-in-time during execution.

The current work evaluates the overheads associated with the exe-
cution of MATLAB scripting languages under McVM virtual machine
environment. More specifically, the overhead is measured in terms of
instructions executed, branch prediction accuracy and cache statistics
under both interpreted, JIT compiled-executed (JIT-CE) and directly
JIT executed(JIT-E) modes.

We observe that compared to the interpreted mode, JIT-CE per-
forms on an average 27 % better. Further, instruction count are 0.26
times lesser for JIT-CE and 0.21 time lesser fro JIT-E than interpreted.
L1 cache miss rates reduce by 0.15 and 0.38 respectively for JIT-CE
and JIT-E.

Keywords: Interpreter, JIT compiler, AOT compiler, Virtual Ma-
chine

1 Introduction

The scripting languages have gained lot of popularity in the age of big
data for statistical software development and for data analysis. These
languages are popular mainly because of their ease of use which in
turn increases the speed of application development and productivity
benefits they bring to the data analysis. They also facilitate interactive
programming and easy debugging. There are more than two million
users of R today and the user base is rapidly expanding [3].

The scripting languages are either interpreted or compiled to byte-
codes, which are JIT-compiled at execution time under the virtual
machine environment. The virtual machine is an application soft-
ware program written in some programming language and is used to
emulate/simulate the target computation model. It being a software
program has an associated overheads with it. The present work anal-
yses the overheads associated with the virtual machine environment
in executing scripting languages. More specifically, we have consid-
ered MATLAB scripting language executing under McVM [1] virtual
machine environment.

The McVM virtual machine is a component of a larger effort known
as the McLab project,which was initiated by Professor Laurie Hendren
of McGill university. The overall goal of the project is to find ways
to improve the performance, usefulness and accessibility of current
scientific programming languages. McVM is McLabs virtual machine,
which implements a significant subset of the MATLAB language. It
is a testing ground for new compiler optimizations aimed at scientific
and dynamic languages [1, 2].

The measurements are done using VTune, commercial application
for software performance analysis from Intel. We measure the over-
head in terms of instructions executed, branches processed and cache
statistics under both interpreted, JIT-CE and JIT-E mode.

The results give us an insight on the overheads associated with the
virtual machine. This provide us an opportunity to identify the bot-
tlenecks and overcome them in order to improve the overall execution
performance.

2 Background
2.1 McVM Architecture

McVM is McLabs virtual machine, which implements a significant sub-
set of the MATLAB language. McVM supports both interpreted and
JIT compiled mode of execution. In the interpreted mode the virtual
machine interprets each line of the input program and executes it im-
mediately. Any errors cause the interpreter to halt. While in the JIT

compiled mode, the functions in the program are compiled to bytecode
when it is encountered for the first time. A hash map of the currently
JIT-compiled functions is maintained. Subsequent calls to the func-
tion are looked up in the hash map and on a hit the canned compiled
version is directly executed. We refer to the first mode as JIT-CE (JIT
compile-execute) where the program is compiled and executed. We re-
run the input program while maintaining the hash map and the canned
compiled binaries which we refer to as JIT-E (JIT only execute) [1, 2].

The McVM virtual machine tries to minimize performance costs
incurred by MATLABs more complex and dynamic language features.
This is achieved partly through the use of type-driven just- in-time
specialization scheme and partly through interpreter fallback mecha-
nism. Some costly dynamic features are still interpreted, but the JIT
compiler has been designed to optimize the clearest and most common
performance bottlenecks as well as possible.

Figure 1 shows the architecture of McVM virtual machine. At the
core, McVMs implementation of matrix types relies directly on a set of
mathematical libraries (ATLAS, BLAS and LAPACK) to implement
fast matrix and vector operations (matrix multiplication, scalar mul-
tiplication, etc.). All language data types and Internal Intermediate
Representation (ITR) types use the Boehm garbage collector library for
garbage collection. The JIT compiler also relies on the LLVM frame-
work to implement low-level JIT compilation to emit machine-specific
code. McVM also depends on the McLab front-end, because the in-
terpreter uses it to parse interactive-mode commands as well as source
code in the form of M-files. Internally, both the interpreter and the
JIT compiler rely on the language core to define the basic primitives on
which they operate. This is the Internal Intermediate Representation
(ITIR) tree, which defines the forms valid programs can take, and the
primitive data types the language supports. The JIT compiler itself
depends on the interpreter because it does not emit compiled code for
all operations, it sometimes uses interpreter fallback to evaluate code
for which there is not yet compiler support.

The functionality of the interpreter is divided into interpretation
logic and state manage- ment. The JIT compiler manages the function
versioning system, emits LLVM code for the statements it can compile,
and performs interpreter fallback for those it cannot. The JIT compiler
also largely relies on a set of analyses to gain additional information
about source programs being compiled. These analyses (live variables,
reaching definitions, bounds check alimination and type inference) are
crucial to generate highperformance code. McVM is entirely imple-
mented in C++.

Aterall e L,

T

Sparsing |z omeands
. Source I
aparsings |y .
E
1
[
Inisrpreier
Interprebar Logk
— —
Ere -
e Slake Managamenl
Analves
I - Type infersncs
. (o]
.
IT Compil=r
Ty I
Data Tepes | Reaching dafs |
doundi chécking
5 LR E ks oo
i Mu
¥ n
¢ b B
S Mu,
¢ “ -\,
T h %
ke 23 3

Wans Boshm o]

mple
L1}

ATLAS, BLAS & LAPACK |

LU Frymaweck |

TIRMEE & CONERrY
Fhf td G

e
]

mplemengn loese-lsun]
michine-ipecilic JIT
compiation

Figure 1: McVM Architecture

2.2 VTune Amplifier

Intel VTune Amplifier is a commercial application for software perfor-
mance analysis for 32 and 64-bit x86 based machines, and has both
GUI and command line interfaces.

The VTune analyzer has three major functions: event-based sam-
pling, the counter monitor and call graph profiling. Event-Based sam-
pling uses special hardware counters inside Intel MPUs to measure a
number of events to monitor during the execution of a workload. Some
examples of events include branch mispredictions [4].

Counter Monitor offers many different families of performance coun-
ters. They tend to be focused at the system rather than the processor
level. For example, with counter monitor, it is possible to measure
the number of semaphores (ensures exclusive access to data) or mu-
texes (ensures exclusive access to instructions) in the system Call graph
profiling (CGP) uses binary instrumentation to record caller/callee re-
lationships between functions as well as timing information. We use
Event Based sampling inorder to capture our results.

Event Based Sampling mechanism is relatively simple and very
low overhead. Periodically, the VTune analyzer collects data from
the processor via an interrupt. The frequency that the interrupts are
issued is either based on a certain number of events occurring (i.e.
every 2000 instructions retired) or an external reference clock (usually
the OS timer). The former mode is referred to as event-based sampling
(EBS), while the latter is known as time-based sampling (TBS). Even
within EBS, VTune analyzer normally calibrates itself to sample at
1ms intervals. When the interrupt occurs, VTune analyzer reads a set
of registers that describe the execution context, including the dynamic
execution address in memory, the associated process 1D, thread ID
and module. If the source code is available, then the collector can even
identify the line of code that the execution address maps to.

Each experiment can take several runs of an application to actually
compile all the requested data, depending on how many counters are to
be collected. Unfortunately, each CPU has a fixed number of registers
(4 for Woodcrest, but 12 for Montecito) used for event sampling, and
these are subject to certain restrictions; some events simply cannot be
measured simultaneously. VTune analyzer can gather quite a bit of
data, but it does have its limits. At a 1lms (1MHz) target resolution,
any workload running more than 25 minutes becomes somewhat prob-
lematic. That much data is too large to be easily manipulated and
displayed; usually this is addressed by decreasing the target sampling
frequency.

2.3 Experimental Methodology

We ran the experiments on a 32 core Intel Xeon machine with 128GB
memory. The processor specifications are -

e L1 cache - 32KB data and instruction - 8 way set associative
e L2 cache - 256KB - 8 way set associative

e L3 cache - 2MB shared - 8 way set associative

e Branch predictor - closely resembles two-level predictor][1]

We have chosen eight benchmark programs for our study. The
benchmarks and their description is listed in Table 1. From [2] we quote
the functional parameters of the applications in the benchmark. The
characteristics of each benchmarks in terms of the number of functions
in each program, the total number of statements (in 3-address form),
the maximum loop nesting depth in the entire program, and the total
number of call sites are as shown in Table 2. For example, fft has two
functions, 159 statements in each function, maximum loop depth of 3
and 8 call site i.e., the functions are called 8 times.

Table 1: Benchmark Description

Benchmark | Description
fft Computes the discrete fourier transform for complex data
capr Computes the transmission line capacitance of a coaxial pair
clos Computes the transitive closure of a directed graph
crni Crank-Nicholson heat equation solver
fdtd Finite Difference Time Domain (FDTD) technique
play Recursive minimax search
nnet Neural network learning AND, OR, XOR functions
schr Solves 2-D Schroedinger equation

Table 2: Benchmark Description

Benchmark | Num. functions | Num. statements | Max. loop depth | Num. call sites
fft 2 159 3 8
capr) 214 2 10
clos 2 58 2 3
crni 3 142 2 7
fdtd 2 157 1 3
play 6 364 2 29
nnet 4 186 3 16
schr 8 203 1 32

3 Evaluation

3.0.1 Execution Time

H Interpreted HJIT-CE

L]
|

"
=

= e
E= =]

[y
L=

Execution Time in seconds
m e

[T = T o B
o

ba

s

[=]

fit capr clos crni fdtd play nnet schr Average

Figure 2: Execution Time

Figure 2 shows the execution time overhead of the interpreted mode
over JIT-CE mode. The JIT-CE mode performs better over inter-
preted mode in most of the benchmarks mainly because of the com-

M Interpreted B IIT-CE B IIT-E
35 +

30 §

25 1

20 A

15 ~

10 §

Instructions normalized to JNT-E

fit capr clos cri fdtd play nnet schr Average

Figure 3: Instruction Count

piled version of the function calls. These functions are optimized to
certain extent by the LLVM compiler infrastructure. The average sub
optimality due to interpreted mode is seen to be 31 % over JIT-CE.

3.0.2 Instruction Count

The instruction count tool provided by VTune counts the instructions
executed by the entire execution in both interpreted, JIT-CE and JIT-
E mode. The mode of the virtual machine can be changed by setting a
flag suitably. The instruction count is normalized to the JIT-E mode.
The results in figure 7?7 show the overheads associated with interpreted
mode and JIT-CE mode.

The instruction count of JIT-CE mode is less than interpreted mode
in most of the benchmarks. The instruction count decreases over mul-
tiple calls to the same function in JIT-CE mode. The instructions in
interpreted mode also depend on the data size on which the function
is operating. For fdtd, nnet, play and schr benchmarks as the data
set is very small as compared to fft and capr, the difference in per-
formance of interpreted and JIT-CE mode is not significant. In case
of crni, JIT-CE executes 32X more instructions and interpreted mode
executes 26X more instructions over JIT-E mode.

3.0.3 Branch Count

The results of the branch instructions missed in all the three modes
are shown in figure ??7. The results are normalized to JIT-E mode.

M Interpreted H JIT-CE B IT-E

35 7

Branch mises normalzed to JIT-E

fft capr clos crni fdtd play nnet schr Average

Figure 4: Missed Branch Instructions normalized to JIT-E

3.0.4 Cache Statistics

The cache statistics are collected in terms of hits and misses for L1,
LLC caches for loads and stores instructions. The results are normal-
ized over JIT-E mode as shown in figure 5a and 5b

H Interpreted HJIT-CE mIT-E

10

Miss rate for L1 Cache
n

o 4
ft capr clos crni fdtd play nnet schr Average
(a) L1 Cache Miss Rate
M Interpreted EIT-CE mJIT-E
4
35

Miss rate for LLC Cache
K2

fft capr clas crni fdtd play nnet schr Average

(b) LLC Cache Miss Rate

Figure 5: Cache Statistics

4 Conclusion

It can be observed from the results presented that there is a lot of
performance gap between interpreted and jit compiled version of the
virtual machine. The execution time of the JIT compiled mode is
better than interpreted mode by 31 %. The overhead of compiling a
function and storing it for future references has cost associated with

10

it initially but this cost gets amortized over sequence of calls to the
same function during the program execution. Hence, one has to make
a judicious decision to go for interpreted or jit compiled mode which
in turn depends on various parameters like number of functions in a
program, instruction count, loop depth, number of calls made to the
function.

Some of the optimizations done by LLVM, help reduce the overhead
of interpreted language. However, the cache behavior indicates that
there is significant opportunity for optimizations in JIT-compiled mode
to make it more locality aware. The overheads associated with the jit
compiled mode provide us an opportunity to optimize the jit compiled
version further by applying rigorous compiler optimization techniques
in order to achieve better performance results.

5 References

References

[1] Chevalier-Boisvert, Maxime, Laurie Hendren, and Clark Ver-
brugge. ”Optimizing MATLAB through just-in-time specializa-
tion.” Compiler Construction. Springer Berlin Heidelberg, 2010.

[2] Chevalier-Boisvert, Maxime. McVM: An optimizing virtual ma-

chine for the MATLAB programming language. Diss. McGill Uni-
versity, Montral, 2009.

[3] Wang, Haichuan, Peng Wu, and David Padua. ”Optimizing R
VM: Allocation removal and path length reduction via interpreter-
level specialization.” Proceedings of Annual IEEE/ACM Interna-

tional Symposium on Code Generation and Optimization. ACM,
2014.

[4] Demystifying Intel Branch Predictor, Milena Milenkovic, Alek-
sandar Milenkovic, Jeffrey Kulick, Electrical and Computer Engi-
neering Department, University of Alabama in Huntsville

[5] Blair-Chappell, Stephen, and Andrew Stokes. Parallel Program-
ming with Intel Parallel Studio XE. John Wiley and Sons, 2012.

[6] Reinders, James. VTune performance analyzer essentials. Intel
Press, 2005.

[7] https://software.intel.com/en-us/intel-vtune-amplifier-xe

11

