
A Comparative Study and Optimization of the Hadoop 

Scheduler 

A project report submitted to  

M. S. Ramaiah Institute of Technology 
An Autonomous Institute, Affiliated to  

Visvesvaraya Technological University, Belgaum 

in partial fulfillment of the requirements for the degree of 

Bachelor of Engineering in Computer Science & Engineering  
 

Submitted by 
 

Kumudha K N  1MS08CS043 
Tejala T  1MS08CS128 
Veena S Pilli  1MS08CS133 

 
 

Under the guidance of 
Jayalakshmi D. S  

Associate Professor 
Department of CSE 

MSRIT 
 

 
 

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING 

M. S. RAMAIAH INSTITUTE OF TECHNOLOGY 
(Autonomous Institute, Affiliated to VTU) 

BANGALORE-560054 
www.msrit.edu 

May 2012 
 

http://www.msrit.edu/�


Department of Computer Science & Engineering 

M. S. Ramaiah Institute of Technology 
(Autonomous Institute, Affiliated to VTU) 

BANGALORE-560054 
 

 
 

CERTIFICATE 
 
 

This is to certify that the project work titled “A Comparative Study and Optimization of 

the Hadoop Scheduler” is carried out by  

Kumudha K N   1MS08CS043 

Tejala T   1MS08CS128 

Veena S Pilli    1MS08CS133 

in partial fulfillment for the award of degree of Bachelor of Engineering in Computer 

Science and Engineering during the year 2012. The Project report has been approved as it 

satisfies the academic requirements with respect to the project work prescribed for 

Bachelor of Engineering Degree. To the best of our understanding the work submitted in 

this report has not been submitted, in part or full, for the award of any diploma or degree 

of this or any other University. 

 
  
 

     
(Jayalakshmi D. S)       (Dr.R. Selvarani) 
         Guide        Head, Dept. of CSE 
 

 
(Examiners) 

          
 

     
 



 
 
 
 

DECLARATION 
 
We hereby declare that the entire work embodied in this report has been carried out by us 

at M. S. Ramaiah Institute of Technology under the supervision of Jayalakshmi D. S, 

Associate Professor. This report has not been submitted in part or full for the award of 

any diploma or degree of this or any other University. 

 
 
Kumudha K N  1MS08CS043 
Tejala T  1MS08CS128 
Veena S Pilli  1MS08CS133 
 
  



Abstract 
 
 

The current cloud infrastructures face challenges to support cloud-based data-

intensive applications that are not only latency-sensitive but also require strong timing 

guarantees. Hadoop is a general-purpose system that enables high-performance 

processing of data over a set of distributed nodes. It is a multi-tasking system that can 

process multiple data sets for multiple jobs for multiple users at the same time. 

Multiprocessing gives Hadoop the opportunity to map jobs to resources in a way that 

optimizes their use. 

 

Up until 2008, Hadoop supported a single scheduler where jobs were submitted to 

a queue, and the Hadoop infrastructure simply executed them in the order of receipt. But 

recent development has led to the making of pluggable schedulers such as Fair scheduler 

and Capacity Schedulers. This allows use of new scheduling algorithms to help optimize 

jobs that have specific characteristics. A further advantage to this change is the increased 

readability of the scheduler, which has opened it up to greater experimentation and the 

potential for a growing list of schedulers to specialize in Hadoop's ever-increasing list of 

applications. 

 

An empirical and exhaustive comparison of the existing Hadoop scheduler with 

Fair scheduler and Capacity scheduler for data intensive applications is made and the 

results are analyzed to infer which scheduler is better for which type of workload. 

Different data intensive applications are developed to run on Hadoop and timing results 

are documented when they are run under different schedulers. 

 

The existing Hadoop scheduler does not take into account data locality when 

scheduling tasks. Data locality problems are overcome by implementing a Delay 

Scheduler which achieves the real-time objective of data locality awareness. A 

comparative analysis of the Delay Scheduler and the Fair Scheduler is done and the 

results are analyzed graphically. 

 

i 



ACKNOWLEDGEMENTS 
 
 

We wish to express our hearty and sincere gratitude to our college M.S Ramaiah 

Institute of Technology and our Principal Mr. N.V.R Naidu for giving us the opportunity 

to pursue the UG course in Computer Science and Engineering.  

 

We would like to thank the Department of Computer Science and Engineering 

and the Head of Department Dr. R Selvarani for giving us the necessary support to 

execute the project.  

 

Our sincere thanks to our project guide, Mrs. Jayalakshmi D. S., Associate 

Professor, for her invaluable guidance. She has been a major source of inspiration for us. 

We would also like to acknowledge the support received from other faculty members of 

the Computer Science Department. We would like to thank our seniors who have always 

guided us and helped us whenever we had problems relating to the project. 

 

We also thank our friends for providing constant encouragement, support and 

valuable suggestions during the development of the project. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ii 



Contents 
 
 
 
Abstract          i 

 

Acknowledgements         ii 

 

Contents           iii 

 

List of Figures          iv 

 

List of Tables          v 

  

1 Introduction 

1.1 General Introduction       1 

1.2 Current Scenario       1 

1.3 Statement of the Problem      2 

1.4 Objectives of the Project      2 

1.5 Current Scope        3 

 

2 Literature Survey  

2.1 Cluster Computing       4 

 2.1.1. Introduction       

2.1.2. Flavors of Clusters 

2.1.3. Benefits of Clusters 

2.1.4. Hardware Components 

2.1.5. Software Components 

2.1.6. Application Areas for Clusters 

2.2 MapReduce        8  

2.3 Hadoop        13 

2.4 Hadoop Distributed File System (HDFS)    15  

2.5 Job Scheduling       19 



 2.5.1 Fair Scheduler 

  2.5.1.1 Introduction 

  2.5.1.2 Fair Scheduler Goals 

  2.5.1.3 Fair Scheduler Features 

  2.5.1.4 Working of the Fair Scheduler 

  2.5.1.5 Code Guide 

 2.5.2 Capacity Scheduler 

  2.5.2.1 Introduction 

  2.5.2.2 Capacity Scheduler Features 

  2.5.2.3 Working of the Capacity Scheduler 

  2.5.2.4 Code Guide 

 2.5.3 Delay Scheduling 

 

3 Software Requirements Specification  

3.1 Introduction        41 

3.1.1 Purpose 

3.1.2 Scope of the Project 

3.2 General Description       41 

3.2.1 Project Perspective 

3.2.2 General Constraints 

3.2.3 Assumptions and Dependencies 

3.3 Specific Requirements      42 

3.3.1 Functional Requirements 

3.3.2 Software Requirements 

3.3.3 Hardware Requirements 

3.4 Interface Requirements      44 

3.4.1 User Interface 

3.5 Performance Requirements      47 

 

4 System Design  

4.1 Cluster Design        48 

4.2 Scheduler Design       49 



5 Cluster Implementation 

 5.2 Running Hadoop on Single-node Cluster (setup)   51 

5.2.1 Prerequisites 

5.2.2 Hadoop 

5.3 Running Hadoop on Multi-node Cluster (setup)   61 

5.3.1 Prerequisites 

5.3.2 Networking 

5.3.3 SSH Access 

5.3.4 Hadoop 

 

6 Implementation 

 6.1 Fair Scheduler        70 

6.1.1 Installation 

6.1.2 Configuring the Fair Scheduler 

6.1.3 Administration 

6.2 Capacity Scheduler       73 

6.2.1 Installation 

6.2.2 Configuring the Capacity Scheduler 

6.3 Data Locality Aware Scheduling     76 

6.3.1. Data Locality Problems 

6.3.2. Introduction 

6.3.3. Goals 

6.3.4. Implementation of Data Locality Aware Scheduler 

6.3.5. Algorithm 

6.4 Delay Scheduling       78 

6.4.1. Introduction 

6.4.2. Features 

6.4.3. Implementation of Delay Scheduler 

6.4.4. Algorithm 

6.5 MapReduce Applications      80 

 6.5.1 Hadoop Streaming       

 6.5.2 MapReduce Programs       



7 Testing          

 7.1 MapReduce Examples      84 

 7.2  Comparison of Schedulers      84 

  7.2.1 Single-node Cluster Statistics 

  7.2.2 Three-node Cluster Statistics 

  7.2.3 Ten-node Cluster Statistics 

 7.3 Testing the Optimized Hadoop Default Scheduler   97 

 7.4 Testing the Optimized Fair Scheduler    100 

 

8 Conclusion & Future Enhancements      102 

 

9 References         103 

         

10 Screenshots         104 



List of Figures  
 

Fig 2.1: MapReduce data flow with a single reduce task 

Fig 2.2: MapReduce data flow with multiple reduce tasks 

Fig 2.3: Basics of Hadoop 

Fig 2.4: Hadoop Subprojects 

Fig 2.5: HDFS Architechture 

Fig 2.6: Interaction between the NameNode and the DataNodes 

Fig 3.1: Screen shot of hadoop job tracker's web interface 

Fig 3.2: Screen shot of hadoop task tracker's web interface 

Fig 3.3: Screen shot of hadoop namenode's web interface 

Fig 4.1: Elements of Hadoop cluster 

Fig 4.2: System Architecture  

Fig 4.3: Comparative analysis of Hadoop Default Scheduler with Fair and  Capacity   

Schedulers 

Fig 4.4: Comparative analysis of Hadoop Default Scheduler with Optimized schedulers 

Fig 5.1: Multi-node cluster Organization  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iv 



List of Tables 
 

Table 2.1: Description of Hadoop Subprojects 

Table 2.2: Key source files in the Fair Scheduler 

Table 2.3: Key source files in the Capacity Scheduler 

Table 5.1: Properties that can be set in mapred-site.xml to configure the fair scheduler 

Table 5.2: Properties defined for queues in Capacity Scheduler 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v 



Dept. of CSE, MSRIT  1 
 

Chapter 1 
 
Introduction 
  
1.1 General Introduction  

The MapReduce paradigm supports the execution of data-intensive applications. 

Each problem is divided into numerous jobs and they are scheduled in a distributed 

manner. Scheduling of these jobs using the right scheduling policy helps improve the 

overall performance. 
 
The Apache Hadoop software library is a framework that allows for the distributed 

processing of large data sets across clusters of computers using a simple programming 

model. It is designed to scale up from single servers to thousands of machines, each 

offering local computation and storage. Rather than relying on hardware to deliver high-

availability, the library itself is designed to detect and handle failures at the application 

layer, so delivering a highly-available service on top of a cluster of computers, each of 

which may be prone to failures [1]. 

  
1.2 Current Scenario  

Hadoop is a general-purpose system that enables high-performance processing of 

data over a set of distributed nodes. It is a multi-tasking system that can process multiple 

data sets for multiple jobs for multiple users at the same time. Multiprocessing gives 

Hadoop the opportunity to map jobs to resources in a way that optimizes their use. 
  
Up until 2008, Hadoop supported a single scheduler where jobs were submitted to 

a queue, and the Hadoop infrastructure simply executed them in the order of receipt 

(FIFO). But recent development efforts have led to the making of pluggable schedulers 

such as Fair scheduler and Capacity Schedulers. This allows use of new scheduling 

algorithms to help optimize jobs that have specific characteristics. With this change, 

Hadoop is now a multi-user data warehouse that supports a variety of different types of 

processing jobs, with a pluggable scheduler framework providing greater control. This 

framework allows optimal use of a Hadoop cluster over a varied set of workloads. 



Dept. of CSE, MSRIT  2 
 

 The Fair scheduler works on the principle that resources must be assigned to 

jobs such that on average over time, each job gets an equal share of the available 

resources. The result is that jobs that require less time are able to access the CPU and 

finish intermixed with the execution of jobs that require more time to execute. 
 

The Capacity scheduler was defined for large clusters, which may have multiple, 

independent consumers and target applications. Capacity scheduling provides greater 

control as well as the ability to provide a minimum capacity guarantee and share excess 

capacity among users. 
 

Following a strict queuing order hurts data locality and forces a job with no local 

data to be scheduled. We can address the problem through a simple technique called 

delay scheduling. When a node requests a task, if the head-of-line job cannot launch a 

local task, we skip it and look at subsequent jobs. 

 

1.3 Statement of the Problem 

Hadoop uses FIFO as its default scheduler, which measures a job's importance 

based on when it was submitted. A comparative study of the Hadoop default scheduler 

with Fair Scheduler and Capacity Scheduler is done and the results are analyzed to show 

which scheduler is best suited to handle different type’s workloads. 
 

Optimization of the existing Hadoop Scheduler using data-locality aware 

scheduling policy is done for a stream of Hadoop jobs continuously submitted to a cloud 

cluster. Delay scheduling policy is used to optimize the Fair scheduler which overcomes 

the data-locality problems. 

 

1.4 Objectives of the Project 
• Conduct an exhaustive comparative study of the Hadoop default scheduler with 

Fair scheduler and Capacity Scheduler for different data-intensive applications 

under different workload conditions.  

• Catalogue the results and analyze them to determine which scheduling policy is 

better for data-intensive applications. 



Dept. of CSE, MSRIT  3 
 

• Aim to optimize the existing Hadoop scheduler and the Fair scheduler so as to 

achieve better real-time efficiency of scheduling MapReduce jobs by overcoming 

data-locality problems. 

 

1.5 Current Scope 
MapReduce applications are now becoming increasingly latency-sensitive, 

operating under demanding workloads that require fast response times for data-intensive 

computations under high data rates. These include online log processing, processing of 

geographical data, traffic simulation, Google translator systems, personalized 

recommendations, advertisement placement, social network analysis, real-time web 

indexing, processing of bioinformatics and continuous web data analysis. 
 

Hadoop framework supports the execution of MapReduce jobs. Efficient 

scheduling of these jobs is an important factor in performance. We consider alternative 

scheduling policies such as Fair and Capacity scheduling polices and analyze their 

performance on a cluster of three nodes. The problems in data locality are addressed by 

using delay scheduling policy. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Dept. of CSE, MSRIT  4 
 

Chapter 2 
  
Literature Survey  
 
2.1 Cluster Computing  

2.1.1 Introduction 
The needs and expectations of modern-day applications are changing in the sense 

that they not only need computing resources but also the ability to remain available to 

service user requests almost constantly. These needs and expectations of today’s 

applications result in challenging research and development efforts in both the areas of 

computer hardware and software. As applications evolve they inevitably consume more 

and more computing resources. To some extent we can overcome these limitations by 

creating faster processors and install larger memories. But future improvements are 

constrained by a number of factors, including physical ones, such as the speed of light 

and the constraints imposed by various thermodynamic laws, as well as financial ones, 

such as the huge investment needed to fabricate new processors and integrated circuits. 
 

The obvious solution to overcoming these problems is to connect multiple 

processors and systems together and coordinate their efforts. The resulting systems are 

popularly known as parallel computers and they allow the sharing of a computational 

task among multiple processors. Parallel supercomputers have been in the mainstream of 

high-performance computing. However, their popularity is waning. The reasons for this 

decline are many, but include being expensive to purchase and run, potentially difficult 

to program, slow to evolve in the face of emerging hardware technologies, and difficult 

to upgrade without, generally, replacing the whole system. The decline of the dedicated 

parallel supercomputer has been compounded by the emergence of commodity-off-the-

shelf clusters of PCs and workstations. 
 

The emergence of cluster platforms was driven by a number of academic projects, 

such as Beowulf, Berkeley NOW, and HPVM [13]. These projects helped to prove the 

advantage of clusters over other traditional platforms. Some of these advantages 

included, low-entry costs to access supercomputing-level performance, the ability to 



Dept. of CSE, MSRIT  5 
 

track technologies, an incrementally upgradeable system, an open source development 

platform, and not being locked into particular vendor products. Today, the 

overwhelming price/performance advantage of this type of platform over other 

proprietary ones, as well as the other key benefits mentioned earlier, means that clusters 

have infiltrated not only the traditional science and engineering marketplaces for 

research and development, but also the huge commercial marketplaces of commerce and 

industry. It should be noted that this class of machine is not only being used as for high-

performance computation, but increasingly as a platform to provide highly available 

services, for applications such Web and database servers [13].  
 

A cluster is a type of parallel or distributed computer system, which consists of a 

collection of inter-connected stand-alone computers working together as a single 

integrated computing resource. The components of a cluster are usually connected to 

each other through fast local area networks, each node running its own instance of an 

operating system. Clusters are usually deployed to improve performance and availability 

over that of a single computer, while typically being much more cost-effective than 

single computers of comparable speed or availability. Computer clusters have a wide 

range of applicability and deployment, ranging from small business clusters with a 

handful of nodes to some of the fastest supercomputers in the world such as the K 

computer. The key components of a cluster include, multiple standalone computers 

(PCs, Workstations, or SMPs), an operating systems, a high performance interconnect, 

communication software, middleware, and applications [13]. 

 

2.1.2 Flavors of Cluster 
Clusters come in the following major flavors depending on their purpose [12]: 

1. High Performance Computing Flavor. An example is a Beowulf. The purpose is to 

aggregate computing power across nodes to solve a problem faster. For example, 

high performance scientific computing typically spreads portions of the computation 

across the nodes of the cluster and uses message passing to communicate between 

the portions. 

2. High Throughput Computing Flavor. These clusters harness the ever-growing power 

of desktop computing resources while protecting the rights and needs of their 



Dept. of CSE, MSRIT  6 
 

interactive users. These systems are a logical extension of the batch job 

environments on old mainframes. Eg: Condor. 

3. High Availability Computing Flavor. These clusters are designed to provide high 

availability of service. Many vendors provide high availability (HA) systems for the 

commercial world. Most of these systems use redundancy of hardware and software 

components to eliminate single points of failure. A typical system consists of two 

nodes, with mirrored disks, duplicate switches, duplicate I/O devices and multiple 

network paths. 

4. High Performance Service Flavor. A cluster of nodes is used to handle a high 

demand on a web service, mail service, data mining service or other service. 

Typically, a request spawns a thread or process on another node. 

  

2.1.3 Benefits of Clusters 

• Clusters allow trickle-up: hardware and software technologies that were 

developed for broad application to mainstream commercial and consumer 

markets can also serve in the arena of high performance computing. It was this 

aspect of clusters that initially made them possible and triggered the first wave 

of activity in the field. 

• Clusters permit a flexibility of configuration not ordinarily encountered through 

conventional MPP systems. Number of nodes, memory capacity per node, 

number of processors per node, and interconnect topology are all parameters of 

system structure that may be specified in fine detail on a per system basis 

without incurring additional cost due to custom configurability. 

• Further, system structure may easily be modified or augmented over time as 

need and opportunity dictates without the loss of prior investment. This 

expanded control over system structure not only benefits the end user but the 

system vendor as well, yielding a wide array of system capabilities and cost 

tradeoffs to better meet customer demands. 

• Clusters also permit rapid response to technology improvements. As new 

devices including processors, memory, disks, and networks become available, 

they are most likely to be integrated in to desktop or server nodes most quickly 

allowing clusters to be the first class of parallel systems to benefit from such 



Dept. of CSE, MSRIT  7 
 

advances. Clusters are best able to track technology improvements and respond 

most rapidly to new component offerings [12]. 

  

2.1.4  Hardware Components 
The key components comprising a commodity cluster are: 

• The nodes performing the computing  

• The dedicated interconnection network providing the data communication 

among the nodes.  
 

Significant advances for both have been accomplished over the last half decade. 

While originally clusters were almost always assembled at the user site by staff local to 

the user organization, now increasingly clusters are being delivered by vendors as 

turnkey solutions to user specifications [12]. Where once such systems were packaged in 

conventional “tower” cases, now manufacturers are providing slim, rack mounted, nodes 

to deliver more capacity per unit floor area.  
 

Cluster Node Hardware 

A node of a cluster provides the system computing and data storage capability. It 

is differentiated from nodes of fully integrated systems such as an MPP in that it is 

derived from fully operational standalone computing subsystems that are typically 

marketed as desktop or server systems. 
  

Cluster Network Hardware 

Commodity clusters are made possible only because of the availability of adequate 

inter-node communication network technology. Interconnect networks enable data 

packets to be transferred between logical elements distributed among a set of separate 

processor nodes within a cluster through a combination of hardware and software 

support. Clusters incorporate one or more dedicated networks to support message packet 

communication within the distributed system.  

  

 

 



Dept. of CSE, MSRIT  8 
 

2.1.5 Software Components 
While the rapid advances in hardware capability have propelled commodity 

clusters to the forefront of next generation systems, equally important has been the 

evolving capability and maturity of the support software systems and tools. The software 

components that comprise the environment of a commodity cluster may be described in 

two major categories:  

• Programming tools: Programming tools provide languages, libraries, and 

performance and correctness debuggers to construct parallel application 

programs. 

• Resource management system software: Resource management software 

relates to initial installation, administration, and scheduling and allocation 

of both hardware and software components as applied to user workloads. 

 

2.1.6 Application Areas for Clusters 

• Web serving 

• Audio processing (voice based email) 

• Data mining 

• Network simulation 

• Image processing. 

 

2.2 MapReduce 

MapReduce is a framework for processing highly distributed problems across huge 

datasets using a large number of computers (nodes), collectively referred to as a cluster (if all 

nodes use the same hardware) or a grid (if the nodes use different hardware). Computational 

processing can occur on data stored either in a file system (unstructured) or in a database 

(structured) [2]. 
 

Characteristics of Map Reduce: 

• Data locality consideration is important in MapReduce for efficient processing. 

However, MapReduce frameworks do not preserve data locality in consecutive 

operations due to its inherent natures. 



Dept. of CSE, MSRIT  9 
 

• Map/Reduce does any filtering and/or transformations while each mapper is reading 

input data split by InputFormat. 

• It has a simple API. 

• It does automatic parallelization and distribution of data. 

• It incurs not only intensive communication cost but also unnecessary processing cost. 
 

A MapReduce job is a unit of work that the client wants to be performed: it consists of the 

input data, the MapReduce program, and configuration information. Hadoop runs the job by 

dividing it into tasks, of which there are two types: map tasks and reduce tasks.  

• "Map" step: The master node takes the input, partitions it up into smaller sub-

problems, and distributes them to worker nodes. A worker node may do this again in 

turn, leading to a multi-level tree structure. The worker node processes the smaller 

problem, and passes the answer back to its master node. 

• "Reduce" step: The master node then collects the answers to all the sub-problems and 

combines them in some way to form the output – the answer to the problem it was 

originally trying to solve. 
 

The Map and Reduce functions of MapReduce are both defined with respect to data 

structured in (key, value) pairs. Map takes one pair of data with a type in one data domain, and 

returns a list of pairs in a different domain: 
 

Map (k1, v1) → list (k2, v2) 
 

The Map function is applied in parallel to every item in the input dataset. This 

produces a list of (k2, v2) pairs for each call. After that, the MapReduce framework collects 

all pairs with the same key from all lists and groups them together, thus creating one group for 

each one of the different generated keys. The Reduce function is then applied in parallel to 

each group, which in turn produces a collection of values in the same domain: 
 

Reduce (k2, list (v2)) → list (v3) 

 



Dept. of CSE, MSRIT  10 
 

Each Reduce call typically produces either one value v3 or an empty return, though 

one call is allowed to return more than one value. The returns of all calls are collected as the 

desired result list.  
 

There are two types of nodes that control the job execution process: a jobtracker and a 

number of tasktrackers [2]. The jobtracker coordinates all the jobs run on the system by 

scheduling tasks to run on tasktrackers. Tasktrackers run tasks and send progress reports to the 

jobtracker, which keeps a record of the overall progress of each job. If a task fails, the 

jobtracker can reschedule it on a different tasktracker. Hadoop divides the input to a 

MapReduce job into fixed-size pieces called input splits, or just splits. Hadoop creates one 

map task for each split, which runs the user defined map function for each record in the split 

[6]. 
 

     
 

Fig 2.1: MapReduce data flow with a single reduce task 
 

Having many splits means the time taken to process each split is small compared to the 

time to process the whole input. So by processing the splits in parallel, the processing is better 

load-balanced if the splits are small, since a faster machine will be able to process 

proportionally more splits over the course of the job than a slower machine. Even if the 

machines are identical, failed processes or other jobs running concurrently make load 

balancing desirable, and the quality of the load balancing increases as the splits become more 



Dept. of CSE, MSRIT  11 
 

fine-grained. On the other hand, if splits are too small, then the overhead of managing the 

splits and of map task creation begins to dominate the total job execution time. For most jobs, 

a good split size tends to be the size of a HDFS block, 64 MB by default, although this can be 

changed for the cluster (for all newly created files), or specified when each file is created. 
 

Hadoop does its best to run the map task on a node where the input data resides in 

HDFS. This is called the data locality optimization. The optimal split size is the same as the 

block size: it is the largest size of input that can be guaranteed to be stored on a single node. If 

the split spanned two blocks, it would be unlikely that any HDFS node stored both blocks, so 

some of the split would have to be transferred across the network to the node running the map 

task, which is clearly less efficient than running the whole map task using local data. 
 

Map tasks write their output to local disk, not to HDFS. Map output is intermediate 

output: it’s processed by reduce tasks to produce the final output, and once the job is complete 

the map output can be thrown away. So storing it in HDFS, with replication, would be 

unnecessary. If the node running the map task fails before the map output has been consumed 

by the reduce task, then Hadoop will automatically rerun the map task on another node to 

recreate the map output.  
 

Reduce tasks don’t have the advantage of data locality—the input to a single reduce 

task is normally the output from all mappers. The output of reduce task is normally stored in 

HDFS for reliability. For each HDFS block of the reduce output, the first replica is stored on 

the local node, with other replicas being stored on off-rack nodes. Thus, writing the reduce 

output does consume network bandwidth, but only as much as a normal HDFS write pipeline 

consumes. 

 

 

 

 

 

 

 

 



Dept. of CSE, MSRIT  12 
 

 

 

  

 

 

 

 

 

 

 

 

Fig 2.2: MapReduce data flow with multiple reduce tasks 
 

When there are multiple reducers, the map tasks partition their output, each creating 

one partition for each reduce task. There can be many keys (and their associated values) in 

each partition, but the records for every key are all in a single partition. The partitioning can 

be controlled by a user-defined partitioning function, but normally the default partitioner—

which buckets keys using a hash function—works very well. 
 

Many MapReduce jobs are limited by the bandwidth available on the cluster, so it pays 

to minimize the data transferred between map and reduce tasks. Hadoop allows the user to 

specify a combiner function to be run on the map output—the combiner function’s output 

forms the input to the reduce function. Since the combiner function is an optimization, 

Hadoop does not provide a guarantee of how many times it will call it for a particular map 

output record, if at all. In other words, calling the combiner function zero, one, or many times 

should produce the same output from the reducer. 
 

The parallelism offered by MapReduce provides the possibility of recovering from 

partial failure of servers or storage during the operation: if one mapper or reducer fails, the 

work can be rescheduled – assuming the input data is still available. Thus the MapReduce 

framework transforms a list of (key, value) pairs into a list of values. 
 

 



Dept. of CSE, MSRIT  13 
 

2.3 Hadoop 
Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used 

text search library [6]. The Apache Hadoop software library is a framework that allows for the 

distributed processing of large data sets across clusters of computers using a simple 

programming model. It is designed to scale up from single servers to thousands of machines, 

each offering local computation and storage. Rather than rely on hardware to deliver high-

availability, the library itself is designed to detect and handle failures at the application layer, 

so delivering a highly-available service on top of a cluster of computers, each of which may be 

prone to failures. 
 

Hadoop provides a distributed file system and a framework for the analysis and 

transformation of very large data sets using the MapReduce paradigm. An important 

characteristic of Hadoop is the partitioning of data and computation across many (thousands) 

of hosts, and executing application computations in parallel close to their data. 

     
Fig 2.3: Basics of Hadoop 
 

Fig 2.3 illustrates how one interacts with a Hadoop cluster. As you can see, a Hadoop 

cluster is a set of commodity machines networked together in one location. Data storage and 

processing all occur within this “cloud” of machines. Different users can submit computing 



Dept. of CSE, MSRIT  14 
 

“jobs” to Hadoop from individual clients, which can be their own desktop machines in remote 

locations from the Hadoop cluster.  
 

A Hadoop cluster scales computation capacity, storage capacity and IO bandwidth by 

simply adding commodity servers. Hadoop is a collection of related subprojects that fall under 

the umbrella of infrastructure for distributed computing [6]. They are as shown below:  

       
      Fig 2.4: Hadoop Subprojects 

 

Pig Dataflow language and parallel execution framework 

Chukwa System for collecting management data 

Hive Data warehouse infrastructure 

HBase Column-oriented table service 

MapReduce Distributed computation framework 

HDFS  Distributed file system 

ZooKeeper  Distributed coordination service 

Avro Data serialization system 
 

      Table 2.1: Description of Hadoop Subprojects 
   

Hadoop is an Apache project; all components are available via the Apache open source 

license. Yahoo! has developed and contributed to 80% of the core of Hadoop (HDFS and 

MapReduce). HBase was originally developed at Powerset, now a department at Microsoft. 

Hive was originated and develdeveloped at Facebook. Pig, ZooKeeper , and Chukwa were 

originated and developed at Yahoo! Avro was originated at Yahoo! and is being co-developed 

with Cloudera [1][8]. 

 



Dept. of CSE, MSRIT  15 
 

The key distinctions of Hadoop are that it is  

• Accessible—Hadoop runs on large clusters of commodity machines or on cloud 

computing services such as Amazon’s Elastic Compute Cloud (EC2). 

• Robust—Because it is intended to run on commodity hardware, Hadoop is architected 

with the assumption of frequent hardware malfunctions. It can gracefully handle most 

such failures. 

• Scalable—Hadoop scales linearly to handle larger data by adding more nodes to the 

cluster. 

• Simple—Hadoop allows users to quickly write efficient parallel code. 
 

Hadoop’s accessibility and simplicity give it an edge over writing and running large 

distributed programs. Its robustness and scalability make it suitable for even the most 

demanding jobs at Yahoo and Facebook. These features make Hadoop popular in both 

academia and industry. 
 

In Hadoop the data set will be divided into smaller (typically 64 MB) blocks that are 

spread among many machines in the cluster via the Hadoop Distributed File System (HDFS). 

With a modest degree of replication, the cluster machines can read the data set in parallel and 

provide a much higher throughput.  

 

2.4 Hadoop Distributed File System (HDFS) 
HDFS was originally built as infrastructure for the Apache Nutch web search engine 

project. HDFS is part of the Apache Hadoop project, which is part of the Apache Lucene 

project. HDFS is the file system component of Hadoop. The interface to HDFS is patterned 

after the UNIX file system. 
 

The Hadoop Distributed File System (HDFS) is designed to run on commodity 

hardware, store very large data sets reliably, and to stream those data sets at high bandwidth to 

user applications. In a large cluster, thousands of servers both host directly attached storage 

and execute user application tasks. By distributing storage and computation across many 

servers, the resource can grow with demand while remaining economical at every size. 

 
 



Dept. of CSE, MSRIT  16 
 

HDFS features: 

• Highly fault-tolerant.  

• Designed to be deployed on low-cost hardware.  

• Provides high throughput access to application data. 

• Suitable for applications that have large data sets.  

• Relaxes a few POSIX requirements to enable streaming access to file system data. 

• Stores file system metadata and application data separately.  

• All servers are fully connected and communicate with each other using TCP-based 

protocols [10]. 
 

As in other distributed file systems, like PVFS, Lustre and GFS, HDFS stores metadata 

on a dedicated server, called the NameNode. Application data are stored on other servers 

called DataNodes. The file content is replicated on multiple DataNodes for reliability. While 

ensuring data durability, this strategy has the added advantage that data transfer bandwidth is 

multiplied, and there are more opportunities for locating computation near the needed data. 
 

NameNode and DataNode 

The HDFS namespace is a hierarchy of files and directories [8]. Files and directories 

are represented on the NameNode by inodes, with record attributes like permissions, 

modification and access times, namespace and disk space quotas. The file content is split into 

large blocks and each block of the file is independently replicated at multiple DataNodes. The 

NameNode maintains the namespace tree and the mapping of file blocks to DataNodes. 
 

HDFS keeps the entire namespace in RAM. The inode data and the list of blocks 

belonging to each file comprise the metadata of the name system called the image. The 

persistent record of the image stored in the local host’s native files system is called a 

checkpoint. The NameNode also stores the modification log of the image called the journal in 

the local host’s native file system. For improved durability, redundant copies of the checkpoint 

and journal can be made at other servers. During restarts the NameNode restores the 

namespace by reading the namespace and replaying the journal. 

 

 

 



Dept. of CSE, MSRIT  17 
 

 

 

 

 

 

 

  
 

 

 

 
 

Fig 2.5: HDFS Architecture 
 

Each block replica on a DataNode is represented by two files in the local host’s native 

file system. The first file contains the data itself and the second file is block’s metadata 

including checksums for the block data and the block’s generation stamp. The size of the data 

file equals the actual length of the block and does not require extra space to round it up to the 

nominal block size as in traditional file systems. Thus, if a block is half full it needs only half 

of the space of the full block on the local drive. 
 

During startup each DataNode connects to the NameNode and performs a handshake. 

The purpose of the handshake is to verify the namespace ID and the software version of the 

DataNode. If either does not match that of the NameNode the DataNode automatically shuts 

down. After the handshake the DataNode registers with the NameNode. DataNodes 

persistently store their unique storage IDs. The storage ID is an internal identifier of the 

DataNode, which makes it recognizable even if it is restarted with a different IP address or 

port. 
 

A DataNode identifies block replicas in its possession to the NameNode by sending a 

block report. A block report contains the block id, the generation stamp and the length for 

each block replica the server hosts. Subsequent block reports are sent every hour and provide  



Dept. of CSE, MSRIT  18 
 

the NameNode with an up-to date view of where block replicas are located on the cluster. 

During normal operation DataNodes send heartbeats to the NameNode to confirm that the 

DataNode is operating and the block replicas it hosts are available. The default heartbeat 

interval is three seconds. If the NameNode does not receive a heartbeat from a DataNode in 

ten minutes the NameNode considers the DataNode to be out of service and the block replicas 

hosted by that DataNode to be unavailable. 
 

The NameNode does not directly call DataNodes. It uses replies to heartbeats to send 

instructions to the DataNodes. The instructions include commands to: 

• replicate blocks to other nodes; 

• remove local block replicas; 

• re-register or to shut down the node; 

• Send an immediate block report. 
 

These commands are important for maintaining the overall system integrity and therefore it 

is critical to keep heartbeats frequent even on big clusters. The NameNode can process 

thousands of heartbeats per second without affecting other NameNode operations. 
  

HDFS Client 

User applications access the file system using the HDFS client, a code library that 

exports the HDFS file system interface. Similar to most conventional file systems, HDFS 

supports operations to read, write and delete files, and operations to create and delete 

directories. The user references files and directories by paths in the namespace. The user 

application generally does not need to know that file system metadata and storage are on 

different servers, or that blocks have multiple replicas.  
 

When an application reads a file, the HDFS client first asks the NameNode for the list of 

DataNodes that host replicas of the blocks of the file. It then contacts a DataNode directly and 

requests the transfer of the desired block. When a client writes, it first asks the NameNode to 

choose DataNodes to host replicas of the first block of the file. The client organizes a pipeline 

from node-to-node and sends the data. When the first block is filled, the client requests new 

DataNodes to be chosen to host replicas of the next block. A new pipeline is organized, and 

the client sends the further bytes of the file. 



Dept. of CSE, MSRIT  19 
 

        
Fig 2.6: Interaction between the NameNode and the DataNodes 

 

Unlike conventional file systems, HDFS provides an API that exposes the locations of 

a file blocks. This allows applications like the MapReduce framework to schedule a task to 

where the data are located, thus improving the read performance. It also allows an application 

to set the replication factor of a file. By default a file’s replication factor is three. For critical 

files or files which are accessed very often, having a higher replication factor improves their 

tolerance against faults and increase their read bandwidth. 

 

2.5 Job Scheduling 

Job Scheduling plays an important role in the execution of data-intensive applications on 

cloud infrastructures. Choosing the appropriate job scheduling policy depends on the various 

criteria governing the application. Some applications want more real-time scheduling policies 

while some prefer low cost scheduling policies. 
 

Current cloud infrastructures such as Microsoft Azure, Amazon EC2, Blue Cloud, and 

VCloud employ various scheduling policies depending upon their requirements. 
 

VCloud uses Priority Scheduling policy to manage the jobs. Jobs are assigned priorities 

based on some criteria such as number of resources required, deadlines, complexity, etc. The 



Dept. of CSE, MSRIT  20 
 

scheduler then arranges the jobs in the ready queue in order of their priority. Lower priority 

processes get interrupted by incoming higher priority processes.  

Features of this scheduling policy are: 

• Overhead is neither minimal, nor is it significant. 

• Priority Scheduling has no particular advantage in terms of throughput over FIFO 

scheduling. 

• Waiting time and response time depend on the priority of the process. Higher priority 

processes have smaller waiting and response times. 

• Deadlines can be met by giving processes with deadlines a higher priority. 
 

IBM’S BlueCloud uses the Hadoop parallel workload scheduling. By default Hadoop 

uses FIFO, and optional 5 scheduling priorities to schedule jobs from a work queue. Using 

FIFO scheduler runs the risk of blocking a small or critical job with an enormous ad-hoc jobs.  

In version 0.19 and above, the job scheduler was refactored, and added the ability to use an 

alternate scheduler such as the Fair scheduler or the Capacity scheduler. 
 

Amazon EC2 has been the leading cloud provider for many years.  It uses the Hadoop 

framework.  As discussed above the default scheduling policy of Hadoop is the FIFO 

scheduling policy. Other schedulers such as Capacity and Fair are also used. 

 

2.5.1 Fair Scheduler 

2.5.1.1  Introduction 
Fair scheduling is a method of assigning resources to jobs such that all jobs get, 

on average, an equal share of resources over time [5]. When there is a single job 

running, that job uses the entire cluster. When other jobs are submitted, tasks slots that 

free up are assigned to the new jobs, so that each job gets roughly the same amount of 

CPU time. Unlike the default Hadoop scheduler, which forms a queue of jobs, this lets 

short jobs finish in reasonable time while not starving long jobs. It is also a reasonable 

way to share a cluster between a number of users. Finally, fair sharing can also work 

with job priorities - the priorities are used as weights to determine the fraction of total 

compute time that each job should get. 
 



Dept. of CSE, MSRIT  21 
 

The scheduler actually organizes jobs further into "pools", and shares resources 

fairly between these pools. By default, there is a separate pool for each user, so that each 

user gets the same share of the cluster no matter how many jobs they submit. However, 

it is also possible to set a job's pool based on the user's Unix group or any other jobconf 

property, such as the queue name property used by Capacity Scheduler. Within each 

pool, fair sharing is used to share capacity between the running jobs. Pools can also be 

given weights to share the cluster non-proportionally in the config file. 
  

In addition to providing fair sharing, the Fair Scheduler allows assigning 

guaranteed minimum shares to pools [5], which is useful for ensuring that certain users, 

groups or production applications always get sufficient resources. When a pool contains 

jobs, it gets at least its minimum share, but when the pool does not need its full 

guaranteed share, the excess is split between other running jobs. This lets the scheduler 

guarantee capacity for pools while utilizing resources efficiently when these pools don't 

contain jobs. 
 

The Fair Scheduler lets all jobs run by default, but it is also possible to limit the 

number of running jobs per user and per pool through the config file. This can be useful 

when a user must submit hundreds of jobs at once or in general to improve performance 

if running too many jobs at once would cause too much intermediate data to be created 

or too much context-switching. Limiting the jobs does not cause any subsequently 

submitted jobs to fail, only to wait in the scheduler’s queue until some of the user's 

earlier jobs finish. Jobs to run from each user/pool are chosen in order of priority and 

then submit time, as in the default FIFO scheduler in Hadoop. 

 

2.5.1.2 Fair Scheduler Goals 
 The Fair Scheduler was designed with four main goals: 

• Run small jobs quickly even if they are sharing a cluster with large jobs. 

Unlike Hadoop’s built-in FIFO scheduler, fair scheduling lets small jobs make 

progress even if a large job is running, without starving the large job. 

• Provide guaranteed service levels to “production” jobs, to let them run 

alongside experimental jobs in a shared cluster. 



Dept. of CSE, MSRIT  22 
 

• Be simple to administer and configure. The scheduler should do something 

reasonable “out of the box,” and users should only need to configure it as they 

discover that they want to use more advanced features. 

• Support reconfiguration at runtime, without requiring a cluster restart. 

 

2.5.1.3  Scheduler Features 

Pools 
The Fair Scheduler groups jobs into “pools” and performs fair sharing between 

these pools [11]. Each pool can use either FIFO or fair sharing to schedule jobs internal 

to the pool. The pool that a job is placed in is determined by a JobConf property, the 

“pool name property”. By default, this is user.name, so that there is one pool per user. 

However, different properties can be used, e.g. group.name to have one pool per Unix 

group. The mapred-site.xml snippet below shows how to do this: 
 

<property> 

<name>mapred.fairscheduler.poolnameproperty</name> 

<value>pool.name</value> 

</property> 
 

<property> 

<name>pool.name</name> 

<value>${user.name}</value> 

</property> 
 

Minimum Shares 
Normally, active pools (those that contain jobs) will get equal shares of the map 

and reduce task slots in the cluster. However, it is also possible to set a minimum share 

of map and reduce slots on a given pool, which is a number of slots that it will always 

get when it is active, even if its fair share would be below this number. This is useful for 

guaranteeing that production jobs get a certain desired level of service when sharing a 

cluster with non-production jobs. When a pool is inactive (contains no jobs), its 

minimum share is not “reserved” for it – the slots are split up among the other pools.  



Dept. of CSE, MSRIT  23 
 

Minimum shares have three effects: 

• The pool’s fair share will always be at least as large as its minimum share. Slots are 

taken from the share of other pools to achieve this. The only exception is if the 

minimum shares of the active pools add up to more than the total number of slots in 

the cluster; in this case, each pool’s share will be scaled down proportionally.  

• Pools whose running task count is below their minimum share get assigned slots 

first when slots are available. 

• It is possible to set a preemption timeout on the pool after which, if it has not 

received enough task slots to meet its minimum share, it is allowed to kill tasks in 

other jobs to meet its share. Minimum shares with preemption timeouts thus act 

like SLAs. 
 

Preemption 
As mentioned above, the scheduler may kill tasks from a job in one pool in order 

to meet the minimum share of another pool. This is called preemption, although this 

usage of the word is somewhat strange given the normal definition of preemption as 

pausing; really it is the job that gets preempted, while the task gets killed. The feature 

explained above is called min share preemption. In addition, the scheduler supports fair 

share preemption, to kill tasks when a pool’s fair share is not being met. Fair share 

preemption is much more conservative than min share preemption, because pools 

without min shares are expected to be non-production jobs where some amount of 

unfairness is tolerable. In particular, fair share preemption activates if a pool has been 

below half of its fair share for a configurable fair share pre emption timeout, which is 

recommended to be set fairly high (e.g. 10 minutes). 

In both types of preemption, the scheduler kills the most recently launched tasks 

from over-scheduled pools, to minimize the amount of computation wasted by 

preemption. 
 

Running Job Limits 
The fair scheduler can limit the number of concurrently running jobs from each 

user and from each pool. This is useful for limiting the amount of intermediate data 



Dept. of CSE, MSRIT  24 
 

generated on the cluster. The jobs that will run are chosen in order of submit time and 

priority. Jobs submitted beyond the limit wait for one of the running jobs to finish. 
 

Job Priorities 
Within a pool, job priorities can be used to control the scheduling of jobs, 

whether the pool’s internal scheduling mode is FIFO or fair sharing: 

• In FIFO pools, jobs are ordered first by priority and then by submit time, as in 

Hadoop’s default scheduler. 

• In fair sharing pools, job priorities are used as weights to control how much share 

a job gets. The normal priority corresponds to a weight of 1.0, and each level 

gives 2x more weight. For example, a high-priority job gets a weight of 2.0, and 

will therefore get 2x the share of a normal-priority job. 
 

Pool Weights 
Pools can be given weights to achieve unequal sharing of the cluster. For 

example, a pool with weight 2.0 gets 2x the share of a pool with weight 1.0. 
 

Administration 
The Fair Scheduler includes a web UI displaying the active pools and jobs and 

their fair shares, moving jobs between pools, and changing job priorities. In addition, the 

Fair Scheduler’s allocation file (specifying min shares and preemption timeouts for the 

pools) is automatically reloaded if it is modified on disk, to allow runtime 

reconfiguration. 

 

2.5.1.4  Working of the Fair Scheduler 
All schedulers in Hadoop, including the Fair Scheduler, inherit from the 

TaskScheduler abstract class. This class provides access to a TaskTrackerManager – an 

interface to the JobTracker – as well as a Configuration instance. It also asks the 

scheduler to implement three abstract methods: the lifecycle methods start and 

terminate, and a method called assignTasks to launch tasks on a given TaskTracker.  
 



Dept. of CSE, MSRIT  25 
 

Task assignment in Hadoop is reactive. TaskTrackers periodically send 

heartbeats to the JobTracker with their TaskTrackerStatus, which contains a list of 

running tasks, the number of slots on the node, and other information. The JobTracker 

then calls assignTasks on the scheduler to obtain tasks to launch. These are returned 

with the heartbeat response.  
 

Apart from reacting to heartbeats through assignTasks, schedulers can also be 

notified when jobs have been submitted to the cluster, killed, or removed by adding 

listeners to the TaskTrackerManager. The Fair Scheduler sets up these listeners in its 

start method. An important role of the listeners is to initialize jobs that are submitted – 

until a job is initialized, it cannot launch tasks. The Fair Scheduler currently initializes 

all jobs right away, but it may also be desirable to hold off initializing jobs if too many 

are submitted to limit memory usage on the JobTracker.  
 

Selection of tasks within a job is mostly done by the JobInProgress class, and not 

by individual schedulers. JobInProgress exposes two methods, obtainNewMapTask and 

obtainNewReduceTask, to launch a task of either type. Both methods may either return a 

Task object or null if the job does not wish to launch a task. If the node containing a map 

task failed, the job will wish to re-run it to rebuild its output for use in the reduce tasks. 

Schedulers may therefore need to poll multiple jobs until they find one with a task to 

run.  
 

Finally, for map tasks, an important scheduling criterion is data locality: running 

the task on a node or rack that contains its input data. Normally, 

JobInProgress.obtainNewMapTask returns the “closest” map task to a given node. 

However, to give schedulers slightly more control over data locality, there is also a 

version of obtainNewMapTask that allow the scheduler to cap the level of non-locality 

allowed for the task. The Fair Scheduler uses this method with an algorithm called delay 

scheduling to optimize data locality. 
 

Fair Scheduler Basics 
At a high level, the Fair Scheduler uses hierarchical scheduling to assign tasks. 

First it selects a pool to assign a task to according to the fair sharing algorithm.  Then it 



Dept. of CSE, MSRIT  26 
 

asks the pool obtain a task. The pool chooses among its jobs according to its internal 

scheduling order (FIFO or fair sharing). In fact, because jobs might not have tasks to 

launch (obtainNew(Map|Reduce)Task can return null), the scheduler actually establishes 

an ordering on jobs and asks them for tasks in turn. Within a pool, jobs are sorted either 

by priority and start time (for FIFO) or by distance below fair share. If the first job in the 

ordering does not have a task to launch, the pool will ask the second, third, etc jobs. 

Pools themselves are sorted by distance below min share and fair share, so if the first 

pool does not have any jobs that can launch tasks, the second pool is asked, etc.  
 

Apart from the assign tasks code path, the Fair Scheduler also has a periodic 

update thread that calls update every few seconds. This thread is responsible for 

recomputing fair shares to display them on the UI, checking whether jobs need to be 

preempted, and checking whether the allocations file has changed to reload pool 

allocations (through PoolManager). 
 

The Schedulable Class 
To allow the same fair sharing algorithm to be used both between pools and 

within a pool, the Fair Scheduler uses an abstract class called Schedulable to represent 

both pools and jobs. Its subclasses for these roles are PoolSchedulable and 

JobSchedulable. A Schedulable is responsible for three roles: 

• It can be asked to obtain a task through assignTask. This may return null if the 

Schedulable has no tasks to launch. 

• It can be queried for information about the pool/job to use in scheduling, such as:  

 Number of running tasks. 

 Demand (number of tasks the Schedulable wants to run; this is equal to 

 number of running tasks + number of unlaunched tasks). 

 Min share assigned through config file. 

 Weight (for fair sharing). 

 Priority and start time (for FIFO scheduling). 

• It can be assigned a fair share through setFairShare. 
 

There are separate Schedulable for map and reduce tasks, to make it possible to 

use the same algorithm on both types of tasks. 



Dept. of CSE, MSRIT  27 
 

Fair Sharing Algorithm 
A simple way to achieve fair sharing is the following: whenever a slot is 

available, assign it to the pool that has the fewest running tasks. This will ensure that all 

pool get an equal number of slots, unless a pool’s demand is less than its fair share, in 

which case the extra slots are divided evenly among the other pools. Two features of the 

Fair Scheduler complicate this algorithm a little: 

• Pool weights mean that some pools should get more slots than others. For example, 

a pool with weight 2 should get 2x more slots than a pool with weight 1. This is 

accomplished by changing the scheduling rule to “assign the slot to the pool whose 

value of runningTasks/weight is smallest.” 
• Minimum shares mean that pools below their min share should get slots first. When 

we sort pools to choose which ones to schedule next, we place pools below their 

min share ahead of pools above their min share. We order the pools below their 

min share by how far they are below it as a percentage of the share. 
 

This fair sharing algorithm is implemented in FairShareComparator in the 

SchedulingAlgorithms class. The comparator orders jobs by distance below min share 

and then by runningTasks/weight. 
 

Preemption 
To determine when to preempt tasks, the Fair Schedulers maintains two values 

for each PoolSchedulable: the last time when the pool was at its min share, and the last 

time when the pool was at half its fair share. These conditions are checked periodically 

by the update thread in FairScheduler.updatePreemptionVariables, using the methods 

isStarvedForMinShare and isStarvedForFairShare. These methods also take into account 

the demand of the pool, so that a pool is not counted as starving if its demand is below 

its min/fair share but is otherwise met. 
 

When preempting tasks, the scheduler kills the most recently launched tasks 

from over scheduled pools. This minimizes the amount of computation wasted by 

preemption and ensures that all jobs can eventually finish (it is as if the preempted jobs 

just never got their last few slots). The tasks are chosen and preempted in preemptTasks. 

  



Dept. of CSE, MSRIT  28 
 

Fair Share Computation 
The scheduling algorithm achieves fair shares without actually needing to 

compute pools’ numerical shares beforehand. However, for preemption and for 

displaying shares in the Web UI, we want to know what a pool’s fair share is even if the 

pool is not currently at its share. That is, we want to know how many slots the pool 

would get if we started with all slots being empty and ran the algorithm in until we filled 

them.  
 

One way to compute these shares would be to simulate starting out with empty 

slots and calling assignTasks repeatedly until they filled, but this is expensive, be cause 

each scheduling decision takes O(numJobs) time and we need to make O(numSlots) 

decisions. To compute fair shares efficiently, the Fair Scheduler includes an algorithm 

based on binary search in SchedulingAlgorithms.computeFairShares. This algorithm is 

based on the following observation. If all slots had been assigned according to weighted 

fair sharing respecting pools’ demands and min shares, then there would exist a ratio r 

such that: 

• Pools whose demand di is less than rwi (where wi is the weight of the pool) are 

assigned di slots. 

• Pools whose min share mi is more than rwi are assigned min(mi , di ) slots. 

• All other pools are assigned rwi slots. 

• The pools’ shares sum up to the total number of slots t. 

The Fair Scheduler uses binary search to compute the correct r. We define a 

function f (r) as the number of slots that would be used for a given r if conditions 1-3 

above were met, and then find a value of r that makes f (r) = t. More precisely, f (r) is 

defined as: 

 
Note that f (r) is increasing in r because every term of the sum is increasing, so 

the equation f (r) = t can be solved by binary search. We choose 0 as a lower bound of 

our binary search because with r = 0, only min shares are assigned. To compute an upper 

bound for the binary search, we try r = 1, 2, 4, 8… until we find a value large enough 

that either more than t slots are used or all pools’ demands are met. The steps of the 



Dept. of CSE, MSRIT  29 
 

algorithm are explained in detail in SchedulingAlgorithms.java. This algorithm runs in 

time O(NP), where N is the number of jobs/pools and P is the desired number of bits of 

precision in the computed values (number of iterations of binary search), which we’ve 

set to 25. It thus scales linearly in the number of jobs and pools. 
 

Running Job Limits 
Running job limits are implemented by marking jobs as not runnable if there are 

too many jobs submitted by the same user or pool. This is done in 

FairScheduler.updateRunnability. A job that is not runnable declares its demand as 0 and 

always returns null from assignTasks. 
 

Locking Order 
Fair Scheduler data structures can be touched by several threads. Most 

commonly, the JobTracker invokes assignTasks. This happens inside a block of code 

where the JobTracker has locked itself already. Therefore, to prevent deadlocks, we 

always ensure that if both the FairScheduler and the JobTracker must be locked, the 

JobTracker is locked first. Other threads that can lock the FairScheduler include the 

update thread and the web UI. 
 

Unit Tests 
The Fair Scheduler contains extensive unit tests using mock 

TaskTrackerManager, JobInProgress, TaskInProgress, and Schedulable objects. 

Scheduler tests are in TestFairScheduler.java. The computeFairShares algorithm is 

tested separately in TestComputeFairShares.java. All tests use accelerated time via a 

fake Clock class. 

 

2.5.1.5  Code Guide 
The following table lists the key source files in the Fair Scheduler: 

FILE CONTENTS 

FairScheduler.java Scheduler entry point. Also contains update 

thread, and logic for preemption, delay 

scheduling, and running job limits. 



Dept. of CSE, MSRIT  30 
 

Schedulable.java Definition of the Schedulable class. Extended 

by JobSchedulable and PoolSchedulable. 

SchedulingAlgorithms.java Contains FIFO and fair sharing comparators, as 

well as the computeFairShares algorithm. 

PoolManager.java Reads pool properties from the allocation file 

and maintains a collection of Pool objects. 

Pools are created on demand. 

Pool.java Represents a pool and stores its map and reduce 

Schedulables. 

FairSchedulerServlet.java Implements the scheduler’s web UI. 

FairSchedulerEventLog.java An easy-to-parse event log for debugging. Must 

be enabled through 

mapred.fairscheduler.eventlog.enabled. If 

enabled, logs are placed in $HADOOP LOG 

DIR/fairscheduler. 

TaskSelector.java A pluggable class responsible for picking tasks 

within a job. Currently, DefaultTaskSelector 

delegates to JobInProgress, but this would be a 

useful place to experiment with new algorithms 

for speculative execution and locality. 

LoadManager.java A pluggable class responsible for determining 

when to launch more tasks on a TaskTracker. 

Currently, CapBasedLoadManager uses slot 

counts, but this would be a useful place to 

experiment with scheduling based on machine 

load. 

WeightAdjuster.java A pluggable class responsible for setting job 

weights. An example, NewJobWeightBooster, is 

provided, which increases weight temporarily 

for new jobs. 

 

Table 2.2: Key source files in the Fair Scheduler 



Dept. of CSE, MSRIT  31 
 

2.5.2 Capacity Scheduler 

2.5.2.1 Introduction 
The Capacity Scheduler is designed to run Hadoop Map-Reduce as a shared, 

multi-tenant cluster in an operator-friendly manner while maximizing the throughput 

and the utilization of the cluster while running Map-Reduce applications [4]. 
 

Traditionally each organization has it own private set of compute resources that 

have sufficient capacity to meet the organization's SLA under peak or near peak 

conditions. This generally leads to poor average utilization and the overhead of 

managing multiple independent clusters, one per each organization. Sharing clusters 

between organizations is a cost-effective manner of running large Hadoop installations 

since this allows them to reap benefits of economies of scale without creating private 

clusters. However, organizations are concerned about sharing a cluster because they are 

worried about others using the resources that are critical for their SLAs. 

 

The Capacity Scheduler is designed to allow sharing a large cluster while giving 

each organization a minimum capacity guarantee [4]. The central idea is that the 

available resources in the Hadoop Map-Reduce cluster are partitioned among multiple 

organizations that collectively fund the cluster based on computing needs. There is an 

added benefit that an organization can access any excess capacity not being used by 

others. This provides elasticity for the organizations in a cost-effective manner. Sharing 

clusters across organizations necessitates strong support for multi-tenancy since each 

organization must be guaranteed capacity and safe-guards to ensure the shared cluster is 

impervious to single rouge job or user. The Capacity Scheduler provides a stringent set 

of limits to ensure that a single job or user or queue cannot consume disproportionate 

amount of resources in the cluster. Also, the Job Tracker of the cluster, in particular, is a 

precious resource and the Capacity Scheduler provides limits on initialized/pending 

tasks and jobs from a single user and queue to ensure fairness and stability of the cluster. 

The primary abstraction provided by the Capacity Scheduler is the concept of queues. 

These queues are typically setup by administrators to reflect the economics of the shared 

cluster. 

 



Dept. of CSE, MSRIT  32 
 

2.5.2.2 Capacity Scheduler Features 

• Support for multiple queues, where a job is submitted to a queue.  

• Queues are allocated a fraction of the capacity of the grid in the sense that a certain 

capacity of resources will be at their disposal. All jobs submitted to a queue will 

have access to the capacity allocated to the queue.  

• Free resources can be allocated to any queue beyond it's capacity. When there is 

demand for these resources from queues running below capacity at a future point in 

time, as tasks scheduled on these resources complete, they will be assigned to jobs 

on queues running below the capacity. 

• Queues optionally support job priorities (disabled by default). 

• Within a queue, jobs with higher priority will have access to the queue's resources 

before jobs with lower priority. However, once a job is running, it will not be 

preempted for a higher priority job, though new tasks from the higher priority job 

will be preferentially scheduled.  

• In order to prevent one or more users from monopolizing its resources, each queue 

enforces a limit on the percentage of resources allocated to a user at any given 

time, if there is competition for them.  

• Support for memory-intensive jobs, wherein a job can optionally specify higher 

memory-requirements than the default, and the tasks of the job will only be run on 

Task Trackers that have enough memory to spare. 
 

The capacity scheduler was designed to have a number of named queues and an 

allotted appropriate capacity for each of the queue. This architecture for the capacity 

scheduler was possible because a previous issue in Jira HADOOP-3444 – The 

architecture for the Hadoop Resource Manager (V1) made changes to the Job Tracker to 

handle queues, guaranteed capacities, user limits and the functionality of scheduling a 

task on a Task Tracker. The Job Tracker contains a new component, the Job Queue 

Manager (JQM), to handle queues of jobs. Job queues are backed up by disk based 

storage. 
 

 

 



Dept. of CSE, MSRIT  33 
 

2.5.2.3 Working of the Capacity Scheduler 

Terminology used in Capacity Scheduler: 
• A queue has excess capacity if it does not have enough jobs (queued or running) 

to take up its guaranteed capacity. Excess capacity needs to be distributed among 

all the queues that have lesser or no capacity. 

• Queues that have given up excess capacity to other queues are called low queues. 

Queues that are running on additional capacity are called high queues. 
 

For each queue, the Job Tracker keeps track of the following: 

• Guaranteed capacity (GC): is the capacity guaranteed to the queue. This parameter 

is set through the configuration file. The sum of all GCs is equal to the grid 

capacity. Since we're handling Map and Reduce slots differently, we will have a 

GC for each, i.e., a GC-M for maps and a GC-R for reducers. The sum of all GC-

Ms is equal to the sum of all map slots available in the Grid, and the sum of all GC-

Rs is equal to the sum of all reduce slots available in the grid. 

• Allocated capacity (AC): is the current capacity of the queue. This can be higher or 

lower than the Gauranteed Capacity, because of excess capacity distribution. The 

sum of all ACs is equal to the grid capacity. As above, each queue will have a AC-

M for maps and AC-R for reduces. 

• Timer for claiming containers: is the number of seconds the queue can wait till it 

needs its capacity back. There will be separate timers for claiming map and reduce 

slots 

• Number of containers being used, i.e., the number of running tasks associated with 

the queue (C-RUN). Each queue will have a C-RUN-M for maps and C-RUN-R for 

reduces. 

• The number of Map and Reduce containers used by each user. 
 

Periodically or based on some events, the Job Tracker looks at redistributing the 

capacity. This can result in excess capacity being given to queues that need them, and 

capacity being claimed by queues. 
 

 



Dept. of CSE, MSRIT  34 
 

Algorithm to redistribute excess capacity 
The Job Tracker will run the following algorithm to redistribute excess capacity 

for both Maps and Reduces. 

• The Job Tracker checks each queue to see if it has excess capacity. A queue has 

excess capacity if the number of running tasks associated with the queue is less 

than the allocated capacity of the queue (i.e., if C-RUN < AC) and there are no jobs 

queued. (C-RUN can also be taken as the number of tasks required by the waiting 

jobs). 

• The total excess capacity is the sum of excess capacities of each queue. If there is 

at least one queue with excess capacity, the Job Tracker figures out the queues that 

this capacity can be distributed to. These are queues that need capacity, where C-

RUN = AC (i.e., the queue is running at max capacity) and there are queued jobs. 

• The Job Tracker now calculates how much excess capacity to distribute to each 

queue that needs it. This can be done in many ways. 

 Distribute capacity in the ratio of each queues guaranteed capacity. So if 

queue Q1, Q2, and Q3 have guaranteed capacities of GC1, GC2, and GC3, 

and if Q3 has N containers of excess capacity, Q1 gets 

(GC1*N)/(GC1+GC2) additional capacity, while Q2 gets 

(GC2*N)/(GC1+GC2). 

 You could use some other ratio that uses the number of waiting jobs. The 

more waiting jobs a queue has, the more its share of excess capacity. 
• For each queue that needs capacity, the Job Tracker increments its AC with the 

capacity it is allocated. At the same time, the Job Tracker appropriately decrements 

the AC of queues with excess capacity. 
 

Algorithm to reclaim excess capacity 
The algorithm below is in terms of tasks, which can be map or reduce tasks. It is 

the same for both. The Job Tracker will run the algorithm to reclaim excess capacity for 

both Maps and Reduces. 

• The Job Tracker determines which queues are low queues (if AC < GC). If a low 

queue has a job waiting, then we need to reclaim its resources. Capacity to be 

reclaimed = GC-AC. 



Dept. of CSE, MSRIT  35 
 

• Capacity is re-claimed from any of the high queues (where AC > GC). 

• Job Tracker decrements the AC of the high queue from which capacity is to be 

claimed, and increments the AC of the low queue. The decremented AC of the high 

queue cannot go below its GC, so the low queue may get its capacity back from 

more than one queue. 

• The Job Tracker also starts a timer for the low queue (this can be an actual timer, or 

just a count, perhaps representing seconds, which can be decremented by the Job 

Tracker periodically). 

• If a timer goes off, the Job Tracker needs to instruct some high queue to kill some of 

their tasks. The following algorithm is used to decide, from which the capacity has to 

be regained to give it back to the low queue: 

 The candidates are those high queues which are running more tasks than they 

should be, i.e., where C-RUN > AC. 
 Among these queues, the Job Tracker can pick those that are using the most 

excess capacity (i.e. queues with higher values for (C-RUN - AC)/AC). 

 

• The next question is 'How does a high queue decide which tasks to kill? '. The Job 

Tracker uses the following method for deciding which task to kill. 

o It is expensive to kill tasks, so we need to focus on getting better at deciding 

which tasks to kill. Ideally, tasks that have started recently or made the least 

progress are the ones that are to be killed. The same algorithm used to decide 

which tasks to speculatively run can be used for this as well. 
 

Within a queue, a user's limit can dynamically change depending on how many 

users have submitted jobs. This needs to be handled in a way similar to how we handle 

excess capacity between queues. 
 

Task Scheduling in the Capacity Scheduler 
The Task scehduling includes the process that happens when the task tracker has 

a free map slot or a free reduce slot. When a Task Tracker has a free Map slot the 

following steps take place: 

• Task Tracker contacts Job Tracker to give it a Map task to run. 



Dept. of CSE, MSRIT  36 
 

• Job Tracker finds out which queue to approach first (among all queues that have 

capacity, i.e., where C-RUN-M < AC-M). This is done in either one of the following 

ways: 

 Round-robin, so every queue has the same chance to get a free container. 

 Job Tracker can pick the queue with the maximum unused capacity. 
 

• Job Tracker needs to pick a job which can use the slot. This is done in one of the 

following ways: 

 If the Job Tracker has no running jobs from that queue, it gets one from the 

Job Queue Manager. 

o Job Tracker asks for the first Job in the selected queue, via the Job 

Queue Manager. If the job's user's limit is maxed out, the job is 

returned to the queue and Job Tracker asks for the next job. This 

continues until the Job Tracker finds a suitable job. 

o Otherwise, the Job Tracker has a list of users in the queue whose 

jobs it is running, and it can figure out which of these users are over 

their limit. It asks the Job Queue Manager for the first job in the 

queue whose user is not in a list of maxed-out users it provides.  

 If the Job Tracker already has a list of running jobs from the queue, it looks 

at each (in order of priority) till it finds one whose user's limit has not been 

exceeded and returns the job to the task Tracker. 
 

• If there is no job in the queue that is eligible to run (the queue may have no queued 

jobs), the Job Tracker picks another queue using the same steps as above. 

• The Job Tracker finds out which Map task from the job to run on the free Task 

Tracker using the algorithm as finding a locality match using the job's cache, then 

look for failed tasks. 

• Job Tracker increments C-RUN-M and the number of Map containers used by the 

job's user. It then returns the task to the Task Tracker. 
 

When a Task Tracker has a free Reduce slot, similar steps as to what happens 

with a free Map slot, except that: 



Dept. of CSE, MSRIT  37 
 

• Since there is no preemption of jobs based on priorities, we will not have the situation 

where a job's Reducers are blocking containers as they're waiting for Maps to run and 

there are no Map slots to run. 
 

When a task fails or completes: Job Tracker decrements C-RUN and the number 

of containers used by the user. 
 

2.5.2.4 Code Guide 
The following table lists the key source files in the Capacity 

FILE CONTENT 

CapacitySchedulerConf.java Class providing access to resource manager 

configuration. Resource manager 

configuration involves setting up queues, and 

defining various properties for the queues. 

These are typically read from a file called 

capacity-scheduler.xml that must be in 

the classpath of the application. The class 

provides APIs to get/set and reload the 

configuration for the queues. 

CapacitySchedulerQueue.java Keeps track of scheduling information for 

queues. This scheduling information is used 

to decide how to allocate tasks, redistribute 

capacity, etc. 

CapacityTaskScheduler.java Scheduler entry point. Extends TaskScheduler 

and contains the core logic of the scheduler. 

JobInitializationPoller.java  This class asynchronously initializes jobs 

submitted to the Map/Reduce cluster running 

with CapacityTaskScheduler    

JobQueuesManager.java The class extends JobInProgressListener and 

maintains the jobs being managed in one or 

more queues 

CapacitySchedulerServlet.java Servlet for displaying capacity scheduler 



Dept. of CSE, MSRIT  38 
 

information, at JobTracker 

URL/scheduler.(Supported only in 1.0)  

MemoryMatcher.java Check if a TT has enough memory to run of 

task specified from this job. 
 

Table 2.3: Key source files in the Capacity Scheduler 

   

2.5.3 Delay Scheduling 
Hadoop Fair Scheduler has two main goals: 

• Fair sharing: divide resources using max-min fair sharing to achieve statistical 

multiplexing. For example, if two jobs are running, each should get half the resources 

and if a third job is launched, each job’s share should be 33%. 

• Data locality: place computations near their input data, to maximize system throughput. 

 

To achieve the first goal (fair sharing), a scheduler must reallocate resources between 

jobs when the number of jobs changes. A key design question is what to do with tasks (units 

of work that make up a job) from running jobs when a new job is submitted, in order to give 

resources to the new job. At a high level, two approaches can be taken:  

1. Kill running tasks to make room for the new job. 

2. Wait for running tasks to finish. 
 

 Killing reallocates resources instantly and gives control over locality for the new jobs, 

but it has the serious disadvantage of wasting the work of killed tasks. Waiting, on the other 

hand, does not have this problem, but can negatively impact fairness, as a new job needs to 

wait for tasks to finish to achieve its share, and locality, as the new job may not have any input 

data on the nodes that free up. 
 

However, a strict implementation of fair sharing compromises locality, because the job 

to be scheduled next according to fairness might not have data on the nodes that are currently 

free [7]. To resolve this problem, we relax fairness slightly through a simple algorithm called 

delay scheduling, in which a job waits for a limited amount of time for a scheduling 

opportunity on a node that has data for it.  
 



Dept. of CSE, MSRIT  39 
 

Locality Problems with Fair Sharing 
The main aspect of MapReduce that complicates scheduling is the need to place tasks near 

their input data. Locality increases throughput because network bandwidth in a large cluster is 

much lower than the total bandwidth of the cluster’s disks. Running on a node that contains 

the data (node locality) is most efficient, but when this is not possible, running on the same 

rack (rack locality) is faster than running off-rack [7]. The two locality problems that arise 

with native fair sharing: head-of-line scheduling and sticky slots. 
 

• Head-of-line scheduling 

The first locality problem occurs in small jobs (jobs that have small input files and 

hence have a small number of data blocks to read). The problem is that whenever a job 

reaches the head of the sorted list in Algorithm 1 (i.e. has the fewest running tasks), one of 

its tasks is launched on the next slot that becomes free, no matter which node this slot is 

on. If the head-of-line job is small, it is unlikely to have data on the node that is given to it. 

For example, a job with data on 10% of nodes will only achieve 10% locality. 
 

• Sticky Slots 

A second locality problem, sticky slots, happens even with large jobs if fair sharing 

is used. There is a tendency for a job to be assigned the same slot repeatedly.  For 

example, suppose that there are 10 jobs in a 100-node cluster with one slot per node, and 

that each job has 10 running tasks. Suppose job j finishes a task on node n. Node n now 

requests a new task. At this point, j has 9 running tasks while all the other jobs have 10. 

Therefore, slots are assigned on node n to job j again. Consequently, in steady state, jobs 

never leave their original slots. This leads to poor data locality because input files are 

striped across the cluster, so each job needs to run some tasks on each machine. 
 

The problems presented happen because following a strict queuing order forces a job 

with no local data to be scheduled. We address them through a simple technique called delay 

scheduling. When a node requests a task, if the head-of-line job cannot launch a local task, we 

skip it and look at subsequent jobs. However, if a job has been skipped long enough, we start 

allowing it to launch non-local tasks, to avoid starvation. The key insight behind delay 

scheduling is that although the first slot we consider giving to a job is unlikely to have data for 

 



Dept. of CSE, MSRIT  40 
 

it, tasks finish so quickly that some slot with data for it will free up in the next few seconds 
 

In delay scheduling, we scan jobs in order given by queuing policy, picking first that is 

permitted to launch a task. The jobs must wait before being permitted to launch non-local 

tasks. There is an increase in a job’s time waited when it is skipped 
 

Features 

• Scan jobs in order given by queuing policy, picking first that is permitted to launch a 

task and the jobs must wait before being permitted to launch non-local tasks 

• Increase a job’s time waited when it is skipped. 

o Delay scheduling works well under two conditions that sufficient fraction of 

tasks are short relative to jobs and there are many locations where a task can 

run. 

 Blocks replicated across nodes, multiple tasks/node. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Dept. of CSE, MSRIT  41 
 

Chapter 3 
 
Software Requirements Specification  
 
3.1 Introduction  

3.1.1 Purpose 
Hadoop uses FIFO as its default scheduler, which treats a job's importance 

relative to when it was submitted. A comparative study of the Hadoop default 

scheduler with Fair Scheduler and Capacity Scheduler is done and the results are 

analyzed to show which scheduler is best suited to handle data-intensive applications. 
 

Optimization of the existing Hadoop Scheduler using multiprocessor 

scheduling techniques is done for a stream of Hadoop jobs continuously submitted to a 

cloud cluster, where each job has a number of tasks. Scheduling is to be done on the 

cluster such that particular real-time objectives are achieved. 

 

3.1.2 Scope of the Project 
MapReduce applications are latency-sensitive, operating under demanding 

workloads that require fast response times for data-intensive computations under high 

data rates. Hadoop framework supports the execution of such MapReduce applications. 

Efficient scheduling of the jobs is an important factor in performance. Alternative 

scheduling policies such as Fair and Capacity scheduling polices are considered and 

their performance is analyzed on a cluster of three nodes. The problems in data locality 

are addressed by using delay scheduling policy. 
 

3.2 General Description 
3.2.1 Project Perspective 

In this project we conduct a comparative study on the Hadoop default scheduler 

and the Fair scheduler and Capacity scheduler. The data from the analysis is used to 

determine which scheduling policy works better under different workloads. Next we 

try to optimize the Hadoop default scheduler so as to schedule MapReduce jobs more 



Dept. of CSE, MSRIT  42 
 

efficiently in order to confer to the real-time constraints such as data-locality 

awareness. 

   

 3.2.2 General Constraints 
Installing Hadoop. Hadoop is an open source project and is freely available as 

compared to the propriety software that employ usage-based payment model. 

• Needs Java sun 6 jdk 

• Contention-free network  

• Good processing speed so as to handle huge amounts of data. 

 

3.2.3 Assumptions and Dependencies 

• Availability of appropriate data sets 

 

3.3 Specific Requirements 
3.3.1 Functional Requirements 
The following constitute the functional requirements which have to be fulfilled: 

Comparative analysis of the Hadoop default scheduler with Fair and Capacity 

Schedulers 

• Ubuntu installation on computers constituting the cluster. 

• Hadoop installation on all cluster computers: The computers are first 

configured to work as a single node cluster and later the required configuration 

files are changed to create a cluster. 

• Running MapReduce applications on the cluster: Different data-intensive 

applications are developed and are run on the cluster under different workload 

conditions. 

• Change the Hadoop default scheduler to the Fair scheduler on the cluster: 

Run the same data-intensive applications on the cluster and log the timing data 

for each workload. 

• Change the Hadoop default scheduler to the Capacity scheduler on the cluster: 

Run the same data-intensive applications on the cluster and log the timing data 

for each workload. 



Dept. of CSE, MSRIT  43 
 

• Conduct a comparative analysis on the results obtained: Plot graphs using the 

obtained data and determine which algorithm is better under which working 

conditions. 
 

Optimization of Hadoop default scheduler  

• The Hadoop default scheduler FIFO is modified. 

• Update the cluster status and task tracker details. 

• Calculate the available Map and Reduce capacity. 

• Using Load Factor, determine if a Map or Reduce task should be assigned 

• For each of the available map slots: 

o Get the status of each of the running jobs 

o Obtain either a new local or rack local or non local task and add it to 

assigned tasks. 

 If map padding exceeds for local task, do not schedule more maps. 

• Repeat the same for Reduce tasks. 
• Only 1 non-local map/reduce task is allocated to avoid depriving another node 

of its local task. 
 

Optimization of Fair Scheduler 

• The fair scheduler is modified. 

• A new enumerator to find the level for each of the jobs is created. 

• Only one of the three levels are allowed - NODE, RACK, OTHER 

• If no local job is present, then the task tracker waits and is not assigned any 

task. 

• If the task tracker has waited for a time greater than the node delay and a rack 

local task is available for the given job, then a rack local task is assigned to it. 

• If no rack local task is available, then the task tracker continues to wait. 

• If the task tracker has waited for a time greater than the Rack delay, then any 

random map task is assigned to the task tracker. 
 

 

 

 



Dept. of CSE, MSRIT  44 
 

3.3.2 Software Requirements 
 Supported Platforms: 

• GNU/Linux is supported as a development and production platform. 

Hadoop has been demonstrated on GNU/Linux clusters with 2000 nodes. 

• Win32 is supported as a development platform. Distributed operation has 

not been well tested on Win32, so it is not supported as a production 

platform. 
 

Required software for Linux and Windows include: 

• JavaTM 1.5.x, preferably from Sun, must be installed. 

• Sun Java JDK 1.6.x 

• SSH (Secure Shell) must be installed and sshd must be running to use the 

Hadoop scripts that manage remote Hadoop daemons. 

• Hadoop 0.20.20/x 
 

Additional requirements for Windows include: 

• Cygwin - Required for shell support in addition to the required software 

above. 

 

3.3.3 Hardware Requirements 

• 2 quad core processors @ 2.5GHz or higher per node 

• Router with more than 4 ports 

• 50GB memory space 

• Ethernet cables 

 

3.4 Interface Requirements 
3.4.1 User Interface 

The basic implementation of the scheduling policy is in Java with the 

MapReduce Hadoop environment. Hence the basic user interface is through the 

command prompt. The first example we consider will be the word count problem. 

The input to the problem will be through a file. Thus the basic user interface includes  



Dept. of CSE, MSRIT  45 
 

a map and reduce program, input to the MapReduce program through a text file. The 

output for the program will be redirected to another file. All these files are specified 

in the command to run the wordcount program. 
 

Hadoop comes with several web interfaces which are by default (defined in 

conf/hadoop-default.xml) available at these locations: 

• http://localhost:50030/ – web UI for MapReduce job tracker(s) 

• http://localhost:50060/ – web UI for task tracker(s) 

• http://localhost:50070/ – web UI for HDFS name node(s) 
 

These web interfaces provide concise information about what’s happening in 

your Hadoop cluster. 

 The job tracker web UI provides information about general job statistics of 

the Hadoop cluster, running/completed/failed jobs and a job history log file. It also 

gives access to the “local machine’s” Hadoop log files (the machine on which the 

web UI is running on). By default, it’s available at http://localhost:50030/. 
 

The task tracker web UI shows you running and non-running tasks. It also 

gives access to the “local machine’s” Hadoop log files. By default, it’s available at 

http://localhost:50060/. 
 

The name node web UI shows you a cluster summary including information 

about total/remaining capacity, live and dead nodes. Additionally, it allows you to 

browse the HDFS namespace and view the contents of its files in the web browser. It 

also gives access to the “local machine’s” Hadoop log files. By default, it’s available 

at http://localhost:50070/. 

 



Dept. of CSE, MSRIT  46 
 

 
 

Fig 3.1: A screenshot of Hadoop's Job Tracker web interface. 

 

 
 

Fig 3.2: A screenshot of Hadoop's Task Tracker web interface. 



Dept. of CSE, MSRIT  47 
 

 
 

Fig 3.3: A screenshot of Hadoop's NameNode web interface. 

 

3.5 Performance Requirements 

• Real-time performance. 

• Minimizing the total executing time of jobs. 

• System load conditions and scheduling metrics. 

• Impact of data skews and communication delays on scheduling. 
 

 

 

 

 



Dept. of CSE, MSRIT  48 
 

Chapter 4 
 

System Design 
 

4.1 Cluster Design 
A Hadoop cluster consists of a relatively simple architecture of masters and slaves (see 

Fig 5.1). The NameNode is the overall master of a Hadoop cluster and is responsible for the 

file system namespace and access control for clients. There also exists a JobTracker, whose 

job is to distribute jobs to waiting nodes. These two entities (NameNode and JobTracker) are 

the masters of the Hadoop architecture [6][10]. The slaves consist of the TaskTracker, which 

manages the job execution (including starting and monitoring jobs, capturing their output, and 

notifying the JobTracker of job completion). The DataNode is the storage node in a Hadoop 

cluster and represents the distributed file system (or at least a portion of it for multiple 

DataNodes). The TaskTracker and the DataNode are the slaves within the Hadoop cluster.
  

 

 
 

Fig 4.1: Elements of a Hadoop cluster 
 



Dept. of CSE, MSRIT  49 
 

The cluster we setup consists of two connected slave nodes on which jobs are 

scheduled and a master node on which the scheduler resides. Each slave node/data node is a 

multicore processor, which is configured to have a number of slots for executing tasks. Each 

job submitted to the cluster consists of a set of independent map tasks, followed by a set of 

independent   reduce tasks. The HDFS stores the input to the MapReduce application.The 

input is divided into smaller blocks and duplicated on multiple nodes. Each map task 

processes an input data block, which consists of a number of (key, value) tuples that are stored 

at one of the slave nodes. Each reduce task (containing also shuffle and sort phases) computes 

final results from the output data of all the map tasks [6].  

 

4.2 Scheduler Design 
 The diagram below shows the architecture of the new Hadoop system. The Hadoop 

framework consists of the HDFS and the MapReduce framework. The Job Scheduling code 

falls between the HDFS and the MapReduce framework. The data for the map reduce 

program, is divided into pieces and stored in the HDFS file system. The scheduler schedules a 

task from the various map tasks and sends it for execution. 

 
 
 
 
 
 
 
 
Fig 4.2: System Architecture 
 
The flow of execution of the project is as shown in the following diagrams.  

• Once Hadoop is setup and a cluster is formed, different data-intensive applications are run 

on the cluster using the Hadoop default scheduler (FIFO), Facebook’s Fair scheduler and 

Yahoo!’s Capacity scheduler.  

• Each application is run for different data sets and the time taken to complete the job is 

logged. 

• The Hadoop default scheduler FIFO is optimized to include data locality awareness. 

MapReduce Jobs 

Delay Scheduler 

HDFS 



Dept. of CSE, MSRIT  50 
 

• Example programs are run on this Hadoop architecture and the time taken for job 

completion is logged. 

• Next the same programs are executed with the Delay scheduler. The corresponding output 

parameters are recorded. 

• The output parameters from the above scheduling policies are compared to analyze the 

performance improvement that can be achieved by using the new schedulers. 

 
Flow of Execution: 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig 4.3: Comparative analysis of Hadoop default scheduler with Fair and Capacity Schedulers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4.4: Comparison of the Hadoop default scheduler with an optimized schedulers 

Map/Redu
ce Task 

Log the 
time taken 
to complete 

jobs 

Job Scheduling using 
Default Hadoop 

Scheduler 

Job Scheduling 
using Fair and 

Capacity 

Compar
e results 

Map/Redu
ce Task 

Log the 
time taken 
to complete 

jobs 

Job Scheduling using 
Default Hadoop 

Scheduler  

Job Scheduling using 
Data Locality Aware 
& Delay Scheduler 

Compar
e results 



Dept. of CSE, MSRIT  51 
 

Chapter 5 
 

Cluster Implementation 
 

5.1 Running Hadoop on a Single Node Cluster (Setup) 
 5.1.1 Prerequisites 

  The single node cluster setup requires the following softwares: 

• Ubuntu Linux 11.04 LTS, 10.10 LTS  
• Hadoop 0.20.2/x, released February 2010 
 

Sun Java 6 
Hadoop requires a working Java 1.5.x (aka 5.0.x) installation. However, using 

Java 1.6.x (aka 6.0.x aka 6) is recommended for running Hadoop. Open Ubuntu 

terminal and execute the following commands: 
 

$ sudo apt-get install python-software-properties 

# add repositories 

         $ add-apt-repository ppa:ferramroberto/ 

 # update source 

         $ sudo apt-get update 

        # install Sun Java6 JDK 

         $ sudo apt-get install sun-java6-jdk sun-java6-plugins sun-java6-fonts 
 

The full JDK will be placed in /usr/lib/jvm/java-6-sun of the Ubuntu Filesystem. After 

installation, make a quick check whether Sun’s JDK is correctly set up:  
 

user@ubuntu:~# java –version 

java version “1.6.0_20” 

Java(TM) SE Runtime Environment (build 1.6.0_20-b02) 

Java HotSpot(TM) Client VM (build 16.3-b01, mixed mode, sharing) 
 

 



Dept. of CSE, MSRIT  52 
 

Adding a dedicated Hadoop system user 
A dedicated Hadoop user account for running Hadoop is created. This helps to 

separate the Hadoop installation from other software applications and user accounts 

running on the same machine (keeping in mind the security, permissions, backups, 

etc). 

 $ sudo addgroup hadoop 

 $ sudo adduser --ingroup hadoop hduser 

This will add the user hduser and the group hadoop to the local machine. 
 

Configuring SSH 
Hadoop requires SSH access to manage its nodes, i.e. remote machines plus the 

local machine. For our single-node setup of Hadoop, we therefore need to configure 

SSH access to localhost for the hduser user created in the previously. First have SSH 

up and running on the machine and it should be configured it to allow SSH public key 

authentication. Next, we have to generate an SSH key for the hduser user. 
 

hduser@ubuntu:~$ ssh-keygen -t rsa -P "" 

Generating public/private rsa key pair. 

Enter file in which to save the key (/home/hduser/.ssh/id_rsa):  

Created directory '/home/hduser/.ssh'. 

Your identification has been saved in /home/hduser/.ssh/id_rsa. 

Your public key has been saved in /home/hduser/.ssh/id_rsa.pub. 

The key fingerprint is: 

d1:f0:27:59:82:a0:75:df:f5:a4:9b:15:d9:39:a7:c9 hduser@ubuntu 

The key's randomart image is: 

+--[ RSA 2048]----+ 

|      o.o.. . ..=| 

|     o ..= = . B+| 

|    .   . * o..o=| 

|         . o  E+ | 

|        S     o  | 

+-----------------+ 



Dept. of CSE, MSRIT  53 
 

The second line will create an RSA key pair with an empty password. Next enable 

SSH access to the local machine with this newly created key. 
 

hduser@ubuntu:~$ cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys 
 

The final step is to test the SSH setup by connecting to the local machine with the 

hduser user. The step is also needed to save the local machine’s host key fingerprint to 

the hduser user’s known_hosts file. 
 

hduser@ubuntu:~$ ssh localhost 

The authenticity of host 'localhost (::1)' can't be established. 

RSA key fingerprint is a0:a6:48:8f:bf:ab:88:d1:82:5b:05:a9:2b:8a:c4:2f. 

Are you sure you want to continue connecting (yes/no)? yes 

Warning: Permanently added 'localhost' (RSA) to the list of known hosts. 

Linux ubuntu 2.6.35-31-generic #63-Ubuntu SMP Mon Nov 28 19:23:11 UTC 2011 

i686 GNU/Linux 

Ubuntu 10.10 
 

Disabling IPv6 
 One problem with IPv6 on Ubuntu is that using 0.0.0.0 for the various 

networking-related Hadoop configuration options will result in Hadoop binding to the 

IPv6 addresses of the Ubuntu box. Disable IPv6 only for Hadoop as documented in 

HADOOP-3437. Do so by adding the following line to conf/hadoop-env.sh: 

export HADOOP_OTPS=Djava.net.preferIPv4Stack=true 
 

 5.1.2 Hadoop 

Installation 

Download the latest stable version of Hadoop from the Apache Download 

Mirrors and extract the contents of the Hadoop package to /usr/local/hadoop. Change 

the owner of all the files to the hduser user and hadoop group as shown below 
 

$ cd /usr/local 

$ sudo tar/xfv Hadoop-0.20.2.tar.gz 



Dept. of CSE, MSRIT  54 
 

$ sudo mv Hadoop-0.20.2 hadoop 

$ sudo chown –R hduser:hadoop hadoop 
 

Update $HOME/.bashrc 
Add the following lines to the end of the $HOME/.bashrc file of user hduser. 

  

    
 

Configuration 
In order to configure Hadoop make changes to the following documents. 
 

hadoop-env.sh 

The only required environment variable that has to be configured for Hadoop is 

JAVA_HOME. Open /conf/hadoop-env.sh in the editor and set the JAVA_HOME 

environment variable to the Sun JDK/JRE 6 directory. 

Change 

#export JAVA_HOME=/usr/lib/j2sdk1.5-sun 

To 

#export JAVA_HOME=/usr/lib/jvm/java-6-sun 
 



Dept. of CSE, MSRIT  55 
 

Conf/*-site.xml 
The ownerships and permissions required are set as follows. If the change in 

ownership is not made we get java.IOException when the namenode is formatted next 

time. 

$ sudo mkdir –p /app/hadoop/tmp 

$ sudo chown hduser:hadoop /app/hadoop/tmp 

# and if you want to tighten up security, chmod 755 to 750 

$ sudo chmod 750 /app/hadoop/tmp 
 

conf/core-site.xml 

Here configuration parameters are included in the conf/core-site.xml 

 
 

conf/mapred-site.xml 

The mapred configuration properties are defined in the conf/mapred-site.xml. 



Dept. of CSE, MSRIT  56 
 

 
 

conf/hdfs-site.xml 

The replication value property is set. 

 
 

Formatting the HDFS filesystem via the NameNode 
By formatting the NameNode we initialize the directory specified by the df 

s.name.dir variable.To do this we run the following command: 

hduser@ubuntu:/usr/local/hadoop$ bin/hadoop namenode -format 
 

The following output is obtained. 



Dept. of CSE, MSRIT  57 
 

12/05/02 12:10:12 INFO namenode.NameNode: STARTUP_MSG:  

/************************************************************ 

STARTUP_MSG: Starting NameNode 

STARTUP_MSG:   host -ubuntu/127.0.1.1 

STARTUP_MSG:   args = [-format] 

STARTUP_MSG:   version = 0.20-append-r1057313-123 

STARTUP_MSG:   build = 

http://svn.apache.org/repos/asf/hadoop/common/branches/branch-0.20-append -r ; 

compiled by 'root' on Wed May  2 11:38:58 IST 2012 

************************************************************/ 

12/05/02 12:10:12 INFO namenode.FSNamesystem: fsOwner=hduser1,hadoop 

12/05/02 12:10:12 INFO namenode.FSNamesystem: supergroup=supergroup 

12/05/02 12:10:12 INFO namenode.FSNamesystem: isPermissionEnabled=true 

12/05/02 12:10:12 INFO common.Storage: Image file of size 97 saved in 0 seconds. 

12/05/02 12:10:12 INFO common.Storage: Storage directory 

/app1/hadoop/tmp/dfs/name has been successfully formatted. 

12/05/02 12:10:12 INFO namenode.NameNode: SHUTDOWN_MSG:  

/************************************************************ 

SHUTDOWN_MSG: Shutting down NameNode at ubuntu/127.0.1.1 

************************************************************/ 
 

Starting the single-node cluster 
To start the cluster the following command has to be run. Starting the cluster will 

startup a Namenode, Datanode, Jobtracker and a Tasktracker on machine. 

hduser@ubuntu:/usr/local/hadoop $ bin/start-all.sh 
 

The following output is obtained: 
 

hduser@ubuntu:/usr/local/hadoop $ bin/start-all.sh  

starting namenode, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser1-namenode-

ubuntu.out 

localhost: starting datanode, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser1-

datanode-ubuntu.out 



Dept. of CSE, MSRIT  58 
 

localhost: starting secondarynamenode, logging to 

/usr/local/hadoop/bin/../logs/hadoop-hduser1-secondarynamenode-ubuntu.out 

starting jobtracker, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser1-jobtracker-

ubuntu.out 

localhost: starting tasktracker, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser1-

tasktracker-ubuntu.out 

hduser@ubuntu:/usr/local/hadoop$ 
 

To check whether the expected Hadoop processes are running, run the jps command. 
 

hduser@ubuntu:/usr/local/hadoop$ jps 

5065 JobTracker 

4601 NameNode 

4779 DataNode 

5271 Jps 

4955 SecondaryNameNode 

5232 TaskTracker 
 

Check with netstat if Hadoop is listening on the configured ports. 
 

Running the MapReduce Job 
Text files in Plain Text UTF-8 encoding are obtained from Project Gutenberg 

and stored in a temporary directory /tmp/gutenberg. 

 
 

Restart the Hadoop cluster and copy the  local data from /tmp/gutenberg onto the HDFS. 



Dept. of CSE, MSRIT  59 
 

 
 

Now run the word count program using: 

hduser@master:/usr/local/hadoop$ bin/hadoop jar hadoop*examples*.jar wordcount  

/user/hduser/gutenberg /user/hduser/gutenberg-output 

... INFO mapred.FileInputFormat: Total input paths to process : 3 

... INFO mapred.JobClient: Running job: job_0001 

... INFO mapred.JobClient:  map 0% reduce 0% 

... INFO mapred.JobClient:  map 28% reduce 0% 

... INFO mapred.JobClient:  map 57% reduce 0% 

... INFO mapred.JobClient:  map 71% reduce 0% 

... INFO mapred.JobClient:  map 100% reduce 9% 

... INFO mapred.JobClient:  map 100% reduce 68% 

... INFO mapred.JobClient:  map 100% reduce 100% 

.... INFO mapred.JobClient: Job complete: job_0001 

... INFO mapred.JobClient: Counters: 11 

... INFO mapred.JobClient:   org.apache.hadoop.examples.WordCount$Counter 

... INFO mapred.JobClient:     WORDS=1173099 

... INFO mapred.JobClient:     VALUES=1368295 

... INFO mapred.JobClient:   Map-Reduce Framework 

... INFO mapred.JobClient:     Map input records=136582 

... INFO mapred.JobClient:     Map output records=1173099 

... INFO mapred.JobClient:     Map input bytes=6925391 

... INFO mapred.JobClient:     Map output bytes=11403568 

... INFO mapred.JobClient:     Combine input records=1173099 

... INFO mapred.JobClient:     Combine output records=195196 

... INFO mapred.JobClient:     Reduce input groups=131275 

 



Dept. of CSE, MSRIT  60 
 

The output can obtained using 

hduser@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls /user/hduser/gutenberg-output 
  
The following output is obtained 
 

Found 2 items 

drwxr-xr-x   - hduser supergroup      /user/hduser/gutenberg-output/_logs 

-rw-r--r--   1 hduser supergroup     /user/hduser/gutenberg-output/part-r-00000 

hduser@ubuntu:/usr/local/hadoop$ 
 

We can increase the number of Reduce tasks by specifying the “-D” option as: 

hduser@ubuntu:/usr/local/hadoop$ bin/Hadoop jar Hadoop*examples*.jar wordcount  

-D user/hduser/gutenberg /user/hduser/gutenberg-output 
 

The Hadoop web interfaces can also be used to view the output, job and task statistics 

• http://localhost:50030/ – web UI for MapReduce job tracker(s) 

• http://localhost:50060/ – web UI for task tracker(s) 

• http://localhost:50070/ – web UI for HDFS name node(s) 
 

Stopping the single-node cluster 
Run the following command to stop all the daemons running on the machine. 

hduser@ubuntu:~$ /usr/local/hadoop/bin/stop-all.sh 
 

The following output is seen. 

hduser@ubuntu:/usr/local/hadoop$ bin/stop-all.sh 

stopping jobtracker 

localhost: stopping tasktracker 

stopping namenode 

localhost: stopping datanode 

localhost: stopping secondarynamenode 

 

 

 



Dept. of CSE, MSRIT  61 
 

5.2 Running Hadoop on a Multi-Node Cluster (Setup) 
 5.2.1 Prerequisites 

Configuring single-node clusters first 
Here 3 single-node clusters are configured, one as master and the other two as 

the slave1 and slave2. The designated master machine is called just the master from 

now on and the slave-only machines the slave1 and slave2. The two machines are 

given these respective hostnames in their networking setup in /etc/hosts. Shutdown 

each single-node cluster with /bin/stop-all.sh before continuing  

 

5.2.2 Networking 
All three machines must be able to reach each other over the network. The 

easiest is to put both machines in the same network with regard to hardware and 

software configuration. Setup a private network of your own using a separate router in 

order to minimize contention. Connect all the three single node clusters to the router 

and create a new wired connection on each of the computers. Define the gateway 

address, IP address and the network mask for each. 

Update /etc/hosts on both machines with the following lines: 
 

#/etc/hosts 

172.1.6.122     master 

172.1.6.106     slave1 

172.1.6.98       slave2 

 

5.2.3 SSH Access 

The hduser user on the master must be able to connect  

a) to its own user account on themaster – i.e. ssh master in this context and not 

necessarily ssh localhost – and  

b) to the hduser user account on the slave via a password-less SSH login. 

 

Next add the hduser@master’s public SSH key manually or use the following SSH 

command: 
 



Dept. of CSE, MSRIT  62 
 

hduser@master:~$ ssh-copy-id –I $HOME/.ssh/id_rsa.pub hduser@slave1 

hduser@master:~$ ssh-copy-id –I $HOME/.ssh/id_rsa.pub hduser@slave2 
 

Then test the SSH setup by connecting with user hduser from the master to the 

user account hduser on the slave1 and slave2. The step is also needed to save slave‘s 

host key fingerprint to the hduser@master‘s known_hosts file. 
 

Connect master to master 
 

 
 

Connect master to slave 
 

 
 

5.2.4 Hadoop 

Cluster Overview  
The next sections will describe how to configure one Ubuntu box as a master 

node and the other Ubuntu box as a slave node. The master node will also act as a 

slave because we only have two machines available in our cluster but still want to 

spread data storage and processing to multiple machines. 



Dept. of CSE, MSRIT  63 
 

 
 

Fig 5.1: Multi-node cluster Organization 
 

Configuration on master 
• Conf/masters 

The conf/masters file defines on which machines Hadoop will start secondary 

NameNodes in our multi-node cluster  The primary NameNode and the JobTracker will 

always be the machines on which the bin/start-dfs.sh and bin/start-mapred.sh scripts are 

run, respectively ie. the master. The conf/masters is updated as: 

 master 
 

• Conf/slaves 

The conf/slaves file lists the hosts, one per line, where the Hadoop slave daemons 

(DataNodes and TaskTrackers) will be run. The conf/masters is updated as: 

 master 

slave1 

slave2 
 



Dept. of CSE, MSRIT  64 
 

For configuring additional slave nodes add the following lines into conf/slaves file 

of all the machines in the cluster. 

master 

slave1 

slave2 

slave3 
 

Configuring conf/*-site.xml on master and slave 

• conf/core-site.xml: 

 <?xml version="1.0"?> 

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?> 

<configuration> 

<property> 

  <name>hadoop.tmp.dir</name> 

  <value>/app/hadoop/tmp</value> 

  <description>A base for other temporary directories.</description> 

</property> 

<property> 

  <name>fs.default.name</name> 

  <value>hdfs://master:54310</value> 

  <description>The name of the default file system.  A URI whose 

  scheme and authority determine the FileSystem implementation.  The 

  uri's scheme determines the config property (fs.SCHEME.impl) naming 

  the FileSystem implementation class.  The uri's authority is used to 

  determine the host, port, etc. for a filesystem.</description> 

</property> 

</configuration> 
 

• conf/mapred-site.xml 

<?xml version="1.0"?> 

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?> 

<configuration> 

 



Dept. of CSE, MSRIT  65 
 

<property> 

  <name>mapred.job.tracker</name> 

  <value>master:54311</value> 

  <description>The host and port that the MapReduce job tracker runs 

  at.  If "local", then jobs are run in-process as a single map 

  and reduce task. 

  </description> 

</property> 

</configuration> 
 

• conf/hdfs-site.xml 

<?xml version="1.0"?> 

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?> 

<configuration> 

<property> 

  <name>dfs.replication</name> 

  <value>3</value> 

  <description>Default block replication. 

  The actual number of replications can be specified when the file is created. 

  The default is used if replication is not specified in create time. 

  </description> 

</property> 

</configuration> 
 

Formatting HDFS via Namenode 
Before the new multi-node cluster is started, format the Hadoop’s distributed 

filesystem (HDFS) for the NameNode. This is done the first time when a Hadoop cluster is 

setup. The following command is executed. 
 

hduser@ubuntu:~$ /usr/local/hadoop/bin/hadoop namenode -format 
 

Start multi-node cluster 
Starting the cluster is done in two steps.  



Dept. of CSE, MSRIT  66 
 

• First, the HDFS daemons are started: the NameNode daemon is started on master, and 

DataNode daemons are started on all slaves. 

• Second, the MapReduce daemons are started: the JobTracker is started on master, and 

TaskTracker daemons are started on all slaves 
 

HDFS daemons 

Run the command /bin/start-dfs.sh on the master machine. This will bring up 

HDFS with the NameNode running on the master machine, and DataNodes on the 

machines listed in the conf/slaves file. 
 

hduser@master:/usr/local/hadoop$ bin/start-dfs.sh 

starting namenode, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser-namenode-

master.out 

slave1: Ubuntu 10.04 

slave1: starting datanode, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser-

datanode-slave.out 

slave2: Ubuntu 10.04 

slave2: starting datanode, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser-

datanode-slave.out 

master: starting datanode, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser-

datanode-master.out 

master: starting secondarynamenode, logging to /usr/local/hadoop/bin/../logs/hadoop-

hduser-secondarynamenode-master.out 
 

Processes running: 

The processes running are determined using the jps command. 

• On master 

hduser@master:/usr/local/hadoop$ jps 

14799 NameNode 

15314 Jps 

14880 DataNode 

14977 SecondaryNameNode 
 



Dept. of CSE, MSRIT  67 
 

• On slave 

hduser@slave:/usr/local/hadoop$ jps 

15616 Jps 

15183 DataNode 
 

Mapred deamons: 

Run the command /bin/start-mapred.sh on the master machine. This will bring up 

the MapReduce cluster with the JobTracker running on the master machine, and 

TaskTrackers on the machines listed in the conf/slaves file. 
 

hduser@master:/usr/local/hadoop$ bin/start-mapred.sh 

starting jobtracker, logging to /usr/local/hadoop/bin/../logs/hadoop-hadoop-jobtracker-

master.out 

slave: Ubuntu 10.04 

slave: starting tasktracker, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser-

tasktracker-slave.out 

slave1: Ubuntu 10.04 

slave1: starting tasktracker, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser-

tasktracker-slave.out 

master: starting tasktracker, logging to /usr/local/hadoop/bin/../logs/hadoop-hduser-

tasktracker-master.out 

hduser@master:/usr/local/hadoop$ 
 

Processes running: 

The processes running are determined using the jps command. 
 

• On master 

hduser@master:/usr/local/hadoop$ jps 

16017 Jps 

14799 NameNode 

15686 TaskTracker 

14880 DataNode 

15596 JobTracker 



Dept. of CSE, MSRIT  68 
 

14977 SecondaryNameNode 
 

• On slave 

hduser@slave:/usr/local/hadoop$ jps 

15183 DataNode 

15897 TaskTracker 

16284 Jps 
 

Running the MapReduce Job 
Seven text files in Plain Text UTF-8 encoding are obtained from Project Gutenberg 

and stored in a temporary directory /tmp/gutenberg. Copy these to the HDFS and run the 

WordCount example MapReduce job on master, and retrieve the job result from HDFS to 

the local filesystem. 
 

hduser@master:/usr/local/hadoop$ bin/hadoop jar hadoop*examples*.jar wordcount  

/user/hduser/gutenberg /user/hduser/gutenberg-output 

... INFO mapred.FileInputFormat: Total input paths to process : 7 

... INFO mapred.JobClient: Running job: job_0001 

... INFO mapred.JobClient:  map 0% reduce 0% 

... INFO mapred.JobClient:  map 28% reduce 0% 

... INFO mapred.JobClient:  map 57% reduce 0% 

... INFO mapred.JobClient:  map 71% reduce 0% 

... INFO mapred.JobClient:  map 100% reduce 9% 

... INFO mapred.JobClient:  map 100% reduce 68% 

... INFO mapred.JobClient:  map 100% reduce 100% 

.... INFO mapred.JobClient: Job complete: job_0001 

... INFO mapred.JobClient: Counters: 11 

... INFO mapred.JobClient:   org.apache.hadoop.examples.WordCount$Counter 

... INFO mapred.JobClient:     WORDS=1173099 

... INFO mapred.JobClient:     VALUES=1368295 

... INFO mapred.JobClient:   Map-Reduce Framework 

... INFO mapred.JobClient:     Map input records=136582 

 



Dept. of CSE, MSRIT  69 
 

... INFO mapred.JobClient:     Map output records=1173099 

... INFO mapred.JobClient:     Map input bytes=6925391 

... INFO mapred.JobClient:     Map output bytes=11403568 

... INFO mapred.JobClient:     Combine input records=1173099 

... INFO mapred.JobClient:     Combine output records=195196 

... INFO mapred.JobClient:     Reduce input groups=131275 

... INFO mapred.JobClient:     Reduce input records=195196 

... INFO mapred.JobClient:     Reduce output records=131275 

hduser@master:/usr/local/hadoop$ 
 

On the master check the logs (hadoop/logs ) of the Namenode and the Jobtracker to see 

how they work. On the slave machine check the Datanode and Tasktracker logs [3][9]. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 



Dept. of CSE, MSRIT  70 
 

Chapter 6 
 
Implementation 
 
6.1 Fair Scheduler 

6.1.1 Installation 
To run the fair scheduler in the Hadoop installation, first put it on the CLASSPATH. 

The easiest way is to copy the hadoop-0.20.2-fairscheduler.jar from 

hadoop/contrib/fairscheduler to hadoop/lib. Alternatively you can modify 

HADOOP_CLASSPATH to include this jar, in Hadoop/conf/hadoop-env.sh [5]. 

• In order to compile fair scheduler, from sources execute ant package in source 

folder and copy the build/contrib/fair-scheduler/hadoop-0.20.2-fairscheduler.jar to 

HADOOP_HOME/lib. 

• Next set the following property in the Hadoop config file Hadoop/conf /mapred-

site.xml to have Hadoop use the fair scheduler:  

<property>  

  <name>mapred.jobtracker.taskScheduler</name>  

  <value>org.apache.hadoop.mapred.FairScheduler</value>  

</property> 

• Once you restart the cluster, you can check that the fair scheduler is running by 

going to http://localhost: 50030/scheduler on the JobTracker's web UI. A "job 

scheduler administration" page should be visible there.  

 

6.1.2 Configuring the Fair scheduler 
  The following properties can be set in mapred-site.xml to configure the fair 

scheduler [5]: 
 

PROPERTY DESCRIPTION 

mapred.fairscheduler.allocation.file Specifies an absolute path to an XML file 

which contains the allocations for each 

pool, as well as the per-pool and per-user 



Dept. of CSE, MSRIT  71 
 

limits on number of running jobs. If this 

property is not provided, allocations are not 

used. 

mapred.fairscheduler.assignmultiple Allows the scheduler to assign both a map 

task and a reduce task on each heartbeat, 

which improves cluster throughput when 

there are many small tasks to run. Boolean 

value, default: false. 

mapred.fairscheduler.sizebasedweight Take into account job sizes in calculating 

their weights for fair sharing.By default, 

weights are only based on job priorities. 

mapred.fairscheduler.poolnameproperty Specify which jobconf property is used to 

determine the pool that a job belongs in. 

String, default: user.name. Other values to 

set this to are: group.name and 

mapred.job.queue.name. 

mapred.fairscheduler.weightadjuster An extensibility point that lets you specify a 

class to adjust the weights of running jobs. 

This class should implement 

the WeightAdjuster interface. 

mapred.fairscheduler.loadmanager An extensibility point that lets you specify a 

class that determines how many maps and 

reduces can run on a given TaskTracker. 

This class should implement the 

LoadManager interface. By default the task 

caps in the Hadoop config file are used, but 

this option could be used to make the load 

based on available memory and CPU 

utilization for example. 



Dept. of CSE, MSRIT  72 
 

mapred.fairscheduler.taskselector An extensibility point that lets you specify a 

class that determines which task from 

within a job to launch on a given tracker. 

This can be used to change either the 

locality policy or the speculative execution 

algorithm. The default implementation uses 

Hadoop's default algorithms from 

JobInProgress. 
 

Table 6.1: Properties that can be set in mapred-site.xml to configure the fair scheduler 

 

6.1.3 Administration 
The fair scheduler provides support for administration at runtime through two 

mechanisms: 

• It is possible to modify pools' allocations and user and pool running job limits at 

runtime by editing the allocation config file. The scheduler will reload this file 10-

15 seconds after it sees that it was modified.  

• Current jobs, pools, and fair shares can be examined through the JobTracker's web 

interface, at http://localhost:50030/scheduler. On this interface, it is also possible to 

modify jobs' priorities or move jobs from one pool to another and see the effects on 

the fair shares (this requires JavaScript). 

The following fields can be seen for each job on the web interface: 

• Submitted - Date and time job was submitted. 

• JobID, User, Name - Job identifiers as on the standard web UI. 

• Pool - Current pool of job. Select another value to move job to another pool. 

• Priority - Current priority. Select another value to change the job's priority 

• Maps/Reduces Finished: Number of tasks finished / total tasks. 

• Maps/Reduces Running: Tasks currently running. 

• Map/Reduce Fair Share: The average number of task slots that this job should 

have at any given time according to fair sharing. The actual number of tasks 

will go up and down depending on how much compute time the job has had, 

but on average it will get its fair share amount. 



Dept. of CSE, MSRIT  73 
 

In addition, it is possible to turn on an "advanced" view for the web UI, by going to 

http://localhost:50030/scheduler?advanced. This view show four more columns used 

for calculations internally: 
 

• Maps/Reduce Weight: Weight of the job in the fair sharing calculations. This 

depends on priority and potentially also on job size and job age if the 

sizebasedweight and NewJobWeightBooster are enabled. 

• Map/Reduce Deficit: The job's scheduling deficit in machine- seconds - the 

amount of resources it should have gotten according to its fair share, minus 

how many it actually got. Positive deficit means the job will be scheduled again 

in the near future because it needs to catch up to its fair share. The scheduler 

schedules jobs with higher deficit ahead of others. Please see the 

Implementation section of this document for details. 

 

6.2 Capacity Scheduler 
 6.2.1  Installation 

• The Capacity Scheduler is available as a JAR file in the Hadoop tarball under 

the contrib/capacity-scheduler directory. The name of the JAR file would be on 

the lines of hadoop-0.20.2-capacity-scheduler.jar. 

• The Scheduler can also be built from source by executing ant package, in 

which case it would be available under build/contrib/capacity-scheduler. 

• To run the Capacity Scheduler in your Hadoop installation, put it on the 

CLASSPATH. The easiest way is to copy the hadoop-0.20.2-capacity-

scheduler.jar from to HADOOP_HOME/lib. Alternatively, you can modify 

HADOOP_CLASSPATH to include this jar, in conf/hadoop-env.sh. 

 

6.2.2 Configuration 

Using the Capacity Scheduler 
To make the Hadoop framework use the Capacity Scheduler, set up the 

following property in the site configuration [4]: 

 

 



Dept. of CSE, MSRIT  74 
 

<property>  

 <name>mapred.jobtracker.taskScheduler</name>  

 <value> org.apache.hadoop.mapred.CapacityTaskScheduler </value>  

 </property> 

 

Setting up queues 
Multiple queues can be defined to which users can submit jobs with the 

Capacity Scheduler. To define multiple queues, you should edit the site configuration 

for Hadoop and modify the mapred.queue.names property. You can also configure 

ACLs for controlling which users or groups have access to the queues. 
 

Configuring properties for queues 
The Capacity Scheduler can be configured with several properties for each 

queue that control the behavior of the Scheduler. This configuration is in the 

conf/capacity-scheduler.xml. By default, the configuration is set up for one queue, 

named default. To specify a property for a queue that is defined in the site 

configuration, you should use the property name as mapred.capacity-

scheduler.queue.<queue-name>.<property-name>. 
 

The properties defined for queues and their descriptions are listed in the table below: 
 

PROPERTY DESCRIPTION 

mapred.capacity-

scheduler.queue.<queue-

name>.capacity 

 

Percentage of the number of slots in the 

cluster that are made to be available for jobs 

in this queue. The sum of capacities for all 

queues should be less than or equal 100. 

mapred.capacity-

scheduler.queue.<queue-

name>.maximum-capacity 

maximum-capacity defines a limit beyond 

which a queue cannot use the capacity of the 

cluster.This provides a means to limit how 

much excess capacity a queue can use. By 

default, there is no limit. The maximum-



Dept. of CSE, MSRIT  75 
 

capacity of a queue can only be greater than 

or equal to its minimum capacity. Default 

value of -1 implies a queue can use complete 

capacity of the cluster.  

mapred.capacity-

scheduler.queue.<queue-

name>.minimum-user-limit-percent 

Each queue enforces a limit on the 

percentage of resources allocated to a user at 

any given time, if there is competition for 

them. This user limit can vary between a 

minimum and maximum value. 

mapred.capacity-

scheduler.queue.<queue-name>.user-

limit-factor 

The multiple of the queue capacity which 

can be configured to allow a single user to 

acquire more slots. By default this is set to 1 

which ensure that a single user can never 

take more than the queue's configured 

capacity irrespective of how idle th cluster 

is. 

mapred.capacity-

scheduler.queue.<queue-

name>.supports-priority 

If true, priorities of jobs will be taken into 

account in scheduling decisions. 

 

Table 6.2: Properties defined for queues in Capacity Scheduler 
 

Reviewing the configuration of the Capacity Scheduler 
Once the installation and configuration is completed, you can review it after 

starting the Map/Reduce cluster from the admin UI. 

• Start the Map/Reduce cluster as usual. 

• Open the JobTracker web UI. 

• The queues you have configured should be listed under the Scheduling 

Information section of the page. 

• The properties for the queues should be visible in the Scheduling Information 

column against each queue. 

 



Dept. of CSE, MSRIT  76 
 

6.3 Data Locality Aware Scheduling 
6.3.1 Data Locality Problems 

The first locality problem occurs in small jobs (jobs that have small input files 

and hence have a small number of data blocks to read). The problem is that whenever a 

job reaches the head of the sorted list [7]. If the head-of-line job is small, it is unlikely 

to have data on the node that is given to it. 

A second locality problem, sticky slots [7], happens even with large jobs if fair 

sharing is used. The problem is that there is a tendency for a job to be assigned the 

same slot repeatedly. For example, suppose that there are 10 jobs in a 100-node cluster 

with one slot per node, and that each job has 10 running tasks. Suppose job j finishes a 

task on node n. Node n now requests a new task. At this point, j has 9 running tasks 

while all the other jobs have 10. Therefore, slots are assigned on node n to job j again. 

Consequently, in steady state, jobs never leave their original slots. This leads to poor 

data locality because input files are striped across the cluster, so each job needs to run 

some tasks on each machine. 
 

The problems we presented happen because following a strict queuing order 

forces a job with no local data to be scheduled. We address them through a simple 

technique called delay scheduling. When a node requests a task, if the head-of-line job 

cannot launch a local task, we skip it and look at subsequent jobs. However, if a job 

has been skipped long enough, we start allowing it to launch non-local tasks, to avoid 

starvation. The key insight behind delay scheduling is that although the first slot we 

consider giving to a job is unlikely to have data for it, tasks finish so quickly that some 

slot with data for it will free up in the next few seconds 

 

6.3.2 Introduction 
Since the existing Hadoop 0.20 scheduler does not consider locality of data 

when scheduling map tasks or reduce tasks to available slots, the FIFO scheduler is 

modified to accommodate locality awareness. 
 

 

 



Dept. of CSE, MSRIT  77 
 

6.3.3 Goals 
Reduce contention on the network by selecting local tasks in preference to rack 

local tasks or non local tasks. Local tasks are those for which data is available on the 

node itself. 

 

Features: 
• Reduction in execution time. 

• When there are excess slots available the scheduler schedules tasks that are non 

local. The number of tasks that can be allocated in this manner is set to 1 so that 

other tasks are not deprived of local tasks. 

• When a map task has to be allocated, the scheduler first looks for locally available 

tasks. Only if there are no locally available the next step is to search for rack local 

tasks. If there is any available task then it is allocated the slot. If no rack local tasks 

are present non-local tasks are searched for and allocated the slot. 

• It uses Load factor to determine how many map tasks and reduce tasks are to be 

scheduled. 

 
 

6.3.4 Implementation of the Data Locality Aware Scheduler 
When a task has to be assigned to a free slot by the scheduler, assignTasks 

function is called. Here the cluster status from the taskTrackerManager is updated. The 

job queue from the JobInProgressListener and the map and reduce task counts of the 

current tracker are noted. 
  

We then compute the remaining load for map and reduce tasks for each job 

across the pool. The load factor is calculated for the map and the reduce tasks. The 

load factor is used to determine the tracker’s current map or reduce capacity. We 

assign tasks to the current taskTracker if the given machine has a workload that's less 

than the maximum load of that kind of task. However, if the cluster is close to getting 

loaded i.e. we don't have enough padding for speculative executions etc., we only 

schedule the "highest priority" task i.e. the task from the job with the highest priority. 
  



Dept. of CSE, MSRIT  78 
 

For each of the available free slots we first try to schedule node local map task. 

A few slots are left free to accommodate future failures and speculative tasks. If map 

padding has exceeded, then we do not allocate the slot. If no node local task is found 

we find rack local or non local task and if found, the task is allocated a slot. The 

process of assigning a reduce task remains the same except that the new reduce task is 

randomly obtained. 
 

6.3.5 Algorithm 
Update the cluster status and task tracker details 

Calculate the available Map and Reduce capacity 

Using Load Factor, determine if a Map or Reduce task should be assigned 

For each of the available map slots: 

      Get the status of each of the running jobs 

      Obtain either a new local or rack local or non local task and add it to assigned tasks 

If map padding exceeds for local task, do not schedule more maps 

Repeat the same for Reduce tasks 
 

6.4 Delay Scheduling 
6.4.1 Introduction 

In delay scheduling, we scan jobs in order given by queuing policy, picking 

first that is permitted to launch a task. The jobs must wait before being permitted to 

launch non-local tasks. There is an increase in a job’s time waited when it is skipped 

 

 6.4.2 Features 

• Scan jobs in order given by queuing policy, picking first that is permitted to launch 

a task.and jobs must wait before being permitted to launch non-local tasks. 

• Increase a job’s time waited when it is skipped. 

• Delay scheduling works well under two conditions: 

o Sufficient fraction of tasks are short relative to jobs 

o There are many locations where a task can run efficiently 

 Blocks replicated across nodes, multiple tasks/node 

 



Dept. of CSE, MSRIT  79 
 

6.4.3 Implementation of Delay Scheduler 
Allocation files are loaded for the pool. The cluster and tracker status for the 

running and runnable maps and reduces are obtained. We scan the jobs to assign tasks 

until neither maps or reduces can be assigned. A task is rejected if either the task 

reaches per heartbeat limit or number of running tasks reaches number of runnable 

tasks or if the tasks are rejected by the load manager. To determine which task type to 

assign, we first choose a task type that is not rejected. If both map and reduce are 

available then we choose the one with fewer running tasks. If the task is of type map, 

then the new task is obtained depending on the locality level otherwise a new reduce 

task is obtained. 
  

 For each of the jobs we obtain the status and sort them by using 

FifoJobComparator or DeficitComparator and update the locality wait time. The 

locality wait time keeps track of the total time waited for a local map task. Locality 

levels are set depending on the present locality level and a cache level cap is 

established to ensure that only jobs of a given locality level or lower are launched. A 

job is marked as visited if the map task was not launched. 
 

We compute he locality level based on the time waited. 

If the last launched task was node-local, then the locality level can be: 

Non-local/Any: if timeWaitedForLocalMap > nodeLocalityDelay + rackLocalityDelay 

Rack: if timeWaitedForLocalMap >= nodeLocalityDelay 

Node: otherwise 

If last task launched was rack-local: 

Non-local/Any: if timeWaitedForLocalMap >= rackLocalityDelay 

Rack: otherwise 

The default locality level is Any. 

 

 6.4.4 Algorithm 
when there is a free task slot on node n: 

sort jobs according to queuing policy 

for j in jobs: 

  if j has node-local task t on n: 



Dept. of CSE, MSRIT  80 
 

   j.level := 0; j.wait := 0; return t 

  else if j has rack-local task t on n and (j.level ≥ 1 or j.wait ≥ T1): 

   j.level := 1; j.wait := 0; return t 

  else if j.level = 2 or (j.level = 1 and j.wait ≥ T2) 

        or (j.level = 0 and j.wait ≥ T1 + T2): 

   j.level := 2; j.wait := 0; return t 

  else: 

   j.wait += time since last scheduling decision 
 

Each job begins at a “locality level” of 0, where it can only launch node-local 

tasks. If it waits at least W1 seconds, it goes to locality level 1 and may launch rack-

local tasks. If it waits a further W2 seconds, it goes to level 2 and may launch off-rack 

tasks. Finally, if a job ever launches a “more local” task than the level it is on, it goes 

back down to a previous level. 

 

6.5 MapReduce Applications 
Even though the Hadoop framework is written in Java, programs for Hadoop need not 

to be coded in Java but can also be developed in other languages like Python or C++. The key 

behind the writing a Python code is that we will use HadoopStreaming for helping us passing 

data between our Map and Reduce code via STDIN (standard input) and STDOUT (standard 

output). We will simply use Python’s sys.stdin to read input data and print our own output to 

sys.stdoutand the rest is taken care of by HadoopStreaming. 

 

6.5.1 Hadoop Streaming 

Hadoop streaming is a utility that comes with the Hadoop distribution. The 

utility allows you to create and run Map/Reduce jobs with any executable or script as 

the mapper and/or the reducer. For example: 
 

$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/hadoop-streaming.jar -input 

myInputDirs -output myOutputDir -mapper /bin/cat -reducer /bin/wc 
 

 



Dept. of CSE, MSRIT  81 
 

How Streaming Works 
In the above example, both the mapper and the reducer are executables that 

read the input from stdin (line by line) and emit the output to stdout. The utility will 

create a Map/Reduce job, submit the job to an appropriate cluster, and monitor the 

progress of the job until it completes. 

When an executable is specified for mappers, each mapper task will launch the 

executable as a separate process when the mapper is initialized. As the mapper task 

runs, it converts its inputs into lines and feed the lines to the stdin of the process. In the 

meantime, the mapper collects the line oriented outputs from the stdout of the process 

and converts each line into a key/value pair, which is collected as the output of the 

mapper. By default, the prefix of a line up to the first tab character is the key and the 

rest of the line (excluding the tab character) will be the value. If there is no tab 

character in the line, then entire line is considered as key and the value is null. 

However, this can be customized, as discussed later. 
 

When an executable is specified for reducers, each reducer task will launch the 

executable as a separate process then the reducer is initialized. As the reducer task 

runs, it converts its input key/values pairs into lines and feeds the lines to the stdin of 

the process. In the meantime, the reducer collects the line oriented outputs from the 

stdout of the process, converts each line into a key/value pair, which is collected as the 

output of the reducer. By default, the prefix of a line up to the first tab character is the 

key and the rest of the line (excluding the tab character) is the value. However, this can 

be customized, as discussed later. 

 

6.5.2 MapReduce Programs 

• Wordcount: This application is implemented as mapper and reducer where the 

mapper outputs the key-value pair < <word>, 1>. The reducer sums up the values, 

which are the occurrence counts for each key. 

• Inverted index: The map function parses each document, and emits a sequence of 

<word, document ID> pairs. The reduce function accepts all pairs for a given word, 

sorts the corresponding document IDs and emits a <word, list(document ID)> pair. 



Dept. of CSE, MSRIT  82 
 

The set of all output pairs forms a simple inverted index. It is easy to augment this 

computation to keep track of word positions. 

• Count of URL Access Frequency: The map function processes logs of web page 

requests and outputs <URL, 1>. The reduce function adds together all values for 

the same URL and emits a <URL, total count> pair. 

• Merge sort: The map function sorts the input values based on the merge sort 

algorithm. The reducer combines the mapper outputs. 

 

Inverted Index Example 
 

• MapperIndex.py 
#! /usr/bin/python 

import os 

from sys import stdin 

import re 

doc_id = ‘’ 

for line in stdin: 

 content , extra = line.split('\n') 

  var = str(content).startswith('docid') 

 if var: 

  doc_id = content 

 else: 

  words = re.findall(r'\w+', content) 

         for word in words: 

   if(len(doc_id)>1): 

                  print("%s\t%s:1" % (word.lower(), doc_id)) 
 

• ReducerIndex.py 
#! /usr/bin/python 

import os 

from sys import stdin 

import re 



Dept. of CSE, MSRIT  83 
 

index = {} 

for line in stdin: 

      word, postings = line.split('\t') 

 index.setdefault(word, {})  

      for posting in postings.split(','): 

                doc_id, count = posting.split(':') 

                count = int(count) 

                index[word].setdefault(doc_id, 0) 

                index[word][doc_id] += count 

 for word in index: 

      postings_list = ["%s:%d" % (doc_id, index[word][doc_id]) for doc_id in 

index[word]] 

        postings = ','.join(postings_list) 

        print('%s\t%s' % (word, postings)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Dept. of CSE, MSRIT  84 
 

Chapter 7 
 
Testing 
 
 In order to carry out tests on the cluster we developed different data-intensive 

applications. Each of the applications is run with different sizes of data sets. The time taken to 

complete the jobs is noted and a graphical analysis is done. The same is repeated by changing 

the schedulers to Fair and Capacity schedulers. 

 

7.1 MapReduce Examples 

• Wordcount 

• Inverted index 

• Count of URL Access Frequency 

• Merge sort 

 

7.2 Comparisons of Schedulers 
 The tests were conducted extensively on a single node cluster, cluster of 3 nodes and a 

cluster of 10 nodes. 

 

7.2.1 Single-node cluster statistics 
 

• When a single job is submitted 
Word Count Program: 

 The input given to the word count program was 3 e-books from the Gutenberg project 

of size 3.5 MB. 

 

Scheduler Execution time in seconds 

FIFO 24 

Fair Scheduler 32 

Capacity Scheduler 38 

 

 



Dept. of CSE, MSRIT  85 
 

Merge Sort Program: 

 The input to the merge sort consisted of a list of numbers. With different schedulers 

the following results were obtained. 

Scheduler Execution time in seconds 

FIFO 27 

Fair Scheduler 23 

Capacity Scheduler 30 

 
 

• When multiple jobs were submitted, the following statistics were obtained. 
 

Word Count Program: 

 With FIFO Scheduler, in the first instance, 2 jobs were submitted one after the other in 

separate executions. In the second case, the jobs were submitted simultaneously in a single 

execution to FIFO, Fair and Capacity Schedulers. The size of the input data for the jobs 

was 25MB and 50 MB. The execution time tabulation is made as follows. 
 

Case 1: 

Job Input Size FIFO execution time in seconds 

Job1 25MB 44 

Job2 50MB 60 
 

Case 2: 

Job Input Size 
Execution time in seconds 

FIFO FAIR CAPACITY 

Job1 50MB 63 94 100 

Job2 25MB 80 58 63 

 

The graph below shows the different scenarios in which Wordcount program was run. 

 



Dept. of CSE, MSRIT  86 
 

 
 

URL Count Program: 

With FIFO Scheduler, in the first instance, 2 jobs were submitted one after the other in 

separate executions. In the second case, the jobs were submitted simultaneously in a single 

execution to FIFO, Fair and Capacity Schedulers. The size of the input data for the jobs 

was 25MB and 50 MB. The execution time tabulation is made as follows. 
 

Case 1: 

Job Input Size FIFO execution time in seconds 

Job1 25MB 24 

Job2 50MB 26 

 

Case 2: 

Job Input Size 
Execution time in seconds 

FIFO FAIR CAPACITY 

Job1 50MB 32 38 43 

Job2 25MB 35 32 36 

 

 

 

 



Dept. of CSE, MSRIT  87 
 

The graph below shows the different scenarios in which URL count program was run. 
 

 
 

Merge Sort Program: 

With FIFO Scheduler, in the first instance, 2 jobs were submitted one after the other in 

separate executions. In the second case, the jobs were submitted simultaneously in a single 

execution to FIFO, Fair and Capacity Schedulers. The size of the input data for the jobs 

was 25MB and 50 MB. The execution time tabulation is made as follows. 

 

Case 1: 

Job Input Size FIFO Execution time in seconds 

Job1 50MB 91 

Job2 25MB 55 

 

Case 2: 

Job Input Size 
Execution time in seconds 

FIFO FAIR CAPACITY 

Job1 50MB 103 189 185 

Job2 25MB 123 86 125 

 

 



Dept. of CSE, MSRIT  88 
 

The graph below shows the different scenarios in which Merge sort program was run. 
 

 
 

Inverted Index Program: 

With FIFO Scheduler, in the first instance, 2 jobs were submitted one after the other in 

separate executions. In the second case, the jobs were submitted simultaneously in a single 

execution to FIFO, Fair and Capacity Schedulers. The size of the input data for the jobs 

was 25MB and 50 MB. The execution time tabulation is made as follows. 

 

Case 1: 

Job Input Size FIFO Execution time in seconds 

Job1 50MB 86 

Job2 25MB 48 

 

Case 2: 

Job Input Size 
Execution time in seconds 

FIFO FAIR CAPACITY 

Job1 50MB 98 109 110 

Job2 25MB 85 73 82 

 
 



Dept. of CSE, MSRIT  89 
 

The graph below shows the different scenarios in which Inverted Index program was run. 
 

 
 

7.2.2 Three-node Cluster Statistics 

In FIFO Scheduling 
 The following two graphs show the time taken for job completion for wordcount ,url 

count , inverted index and merge sort applications when run using FIFO scheduler on a 3 

node cluster. 

 

 



Dept. of CSE, MSRIT  90 
 

In order to compare the FIFO results with that of Fair and Capacity Schedulers, we 

change the configurations files in Hadoop so that the scheduling policy is Fair and 

Capacity. 
 

In Fair Scheduling: 
• Submit two jobs. One job with data set of 750MB(job1) and the other of 

250MB(job2). 

• In FIFO though job2 is smaller it has to wait until job1 completes. 

• In Fair both jobs are interleaved and hence time taken to complete the smaller job 

is less. 

     In Capacity Scheduling 

• Submit two jobs. One job with data set of 750MB(job1) and the other of 

250MB(job2). Each job is sent to a different queue. 

• In FIFO though job2 is smaller it has to wait until job1 completes. 

• In Capacity both queues are interleaved and hence time taken to complete the jobs 

is less. 
 

The following tables show the timings for FIFO vs Fair and FIFO vs Capacity Schedulers. 
 

WordCount Program 
Size Scheduler FIFO FAIR CAPACITY 

750 MB 324 374 372 

250 MB 456 196 159 
  

 The graph below shows the execution timings for FIFO and FAIR schedulers. 

 



Dept. of CSE, MSRIT  91 
 

 
 

The graph below shows the execution timings for FIFO and CAPACITY schedulers. 
 

 
 

Merge sort program    

Size Scheduler FIFO FAIR CAPACITY 

750 MB 498 552 601 

250 MB 672 312 225 

 

The graph below shows the execution timings for FIFO and FAIR schedulers. 

 



Dept. of CSE, MSRIT  92 
 

 
 

The graph below shows the execution timings for FIFO and CAPACITY schedulers. 

 

 
 

URL count program 

Size Scheduler FIFO FAIR CAPACITY 

750 MB 129 159 163 

250 MB 142 116 129 

   

The graph below shows the execution timings for FIFO and FAIR schedulers. 

 



Dept. of CSE, MSRIT  93 
 

 
 

The graph below shows the execution timings for FIFO and CAPACITY schedulers. 

 

 
 

Inverted index program    

Size Scheduler FIFO FAIR CAPACITY 

750 MB 297 355 351 

250 MB 353 207 204 

 

 The graph below shows the execution timings for FIFO and FAIR schedulers. 



Dept. of CSE, MSRIT  94 
 

 
 

The graph below shows the execution timings for FIFO and CAPACITY schedulers. 
 

 
 
 

6.2.3 Ten-node Cluster Statistics 

In FIFO Scheduling 
 The following two graphs show the time taken for job completion for wordcount and 

merge sort applications when run using FIFO scheduler on a 10 node cluster. 
 

• The  results for wordcount program are as shown in the table below 

 



Dept. of CSE, MSRIT  95 
 

Size in GB Time in seconds 

1.5 147 

2 181 

3 256 
 

• The  results for Merge Sort program are as shown in the table below 

Size in GB Time in seconds 

1.5 270 

2 344 

3 524 

 

In Fair Scheduling 
• Submit two jobs. One job with data set of 3GB(job1) and the other of 

1.5GB(job2). 

• In FIFO though job2 is smaller it has to wait until job1 completes. 

• In Fair both jobs are interleaved and hence time taken to complete the smaller 

job is less. 

 

      In Capacity Scheduling 
• Submit two jobs. One job with data set of 3GB(job1) and the other of 

1.5GB(job2). Each job is sent to a different queue. 

• In FIFO though job2 is smaller it has to wait until job1 completes. 

• In Capacity both queues are interleaved and hence time taken to complete the 

jobs is less. 

 

Wordcount program 
Size Scheduler FIFO FAIR CAPACITY 

1.5 GB 345 216 268 

3 GB 276 388 421 

 

The graph below shows the execution timings for FIFO and FAIR schedulers. 

 



Dept. of CSE, MSRIT  96 
 

 
 

 The graph below shows the execution timings for FIFO and CAPACITY schedulers. 

 

       
 

Merge sort program 
Size Scheduler FIFO FAIR CAPACITY 

1.5 GB 667 488 460 

3 GB 597 717 720 

 

The graph below shows the execution timings for FIFO and FAIR schedulers. 

 



Dept. of CSE, MSRIT  97 
 

 
 

The graph below shows the execution timings for FIFO and CAPACITY schedulers. 

  

 
 

 

7.3 Testing the Optimized Hadoop Default Scheduler 
 The following graphs show the comparison in timing from the Hadoop default 

scheduler and our optimized Data locality aware scheduler. 

 



Dept. of CSE, MSRIT  98 
 

WordCount Program 

 

    
 

MergeSort Program 

 

    
 

 



Dept. of CSE, MSRIT  99 
 

URL Count Program 

 

    
 

Inverted Index 

 

    
 

 



Dept. of CSE, MSRIT  100 
 

7.4 Testing the Optimized Fair Scheduler 
 The following graphs show the comparison in timing from the Hadoop default 

scheduler and our optimized Delay scheduler. 

 

WordCount Program 

 
MergeSort Program 

 
 



Dept. of CSE, MSRIT  101 
 

URL Count Program 
 

 
 

Inverted Index 
 

 
 



Dept. of CSE, MSRIT  102 
 

Chapter 8 
 
Conclusion and Future Enhancements 
 

From the data collected and analyzed we can infer that with respect to, 
 

• FIFO and Fair Scheduler, the latter works better than the former when multiple jobs 

are submitted. Fair-share of resources are allocated to all the jobs hence the short jobs 

will finish fast whereas longer jobs are guaranteed not to get starved. 

• FIFO and Capacity, the latter works well when there are many organizations or users 

sharing the cluster. Since each organization is assigned a queue with a minimum 

capacity guarantee, no organization is starved (FIFO) and there is effective use of 

resources. 

• FIFO and Data Locality Aware Scheduler, the latter gives better scheduling results as 

it takes data locality into account when selecting tasks to schedule. By doing so, jobs 

are scheduled when their data is local to the node they are scheduled on hence 

reducing the time in data transfers. 

• Fair and Delay Scheduler, the latter works better as it not only imbibes the good 

characteristics of fair scheduling, it also takes data locality into account. If data is not 

found on the local node, data is searched on the rack. This reduces the time taken to 

compete the job hence optimizing the performance of the scheduler. 

 

The future enhancements to the project include: 
 

• The scheduler in Hadoop can be enhanced to take into account the cost-effectiveness. 

• The effectiveness of the scheduler can be tested by taking into account data skew-ness. 

 

 

 

 

 



Dept. of CSE, MSRIT  103 
 

Chapter 9 
 
References 

[1] Apache Hadoop. http://hadoop.apache.org. 

[2] Hadoop Map/Reduce tutorial, 

http://hadoop.apache.org/common/docs/current/mapred_tutorial.html 

[3] Hadoop cluster setup tutorial, 

http://hadoop.apache.org/common/docs/current/cluster_setup.html 

[4] Hadoop Capacity Scheduler tutorial, 

http://hadoop.apache.org/common/docs/current/capacity_scheduler.html 

[5] Hadoop Fair Scheduler tutorial, 

http://hadoop.apache.org/common/docs/current/fair_scheduler.html 

[6] T. White, Hadoop: The Definitive Guide. O'Reilly Media, Yahoo! Press, June 5, 2009. 

[7] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott 

Shenker, Ion Stoica, Delay Scheduling: A simple Technique for Achieving Locality ad 

Fairness in Cluster Scheduling, IEEE Paper,2010 

[8] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler, The Hadoop 

Distributed File System, IEEE paper, 2010 

[9] Hadoop cluster setup, http://www.michael-noll.com/tutorials.  

[10]  HDFS Architecture, http://hadoop.apache.org/common/docs/current/hdfs_design.html 

[11] Hadoop Fair Scheduler Design Document, August 15, 2009 

[12] Mark Baker, University of Portsmouth, UK, Cluster Computing White Paper, Status – 

 Final Release Version 2.0, 28th December 2000 

[13] Mark Baker, Amy Apon, Rajkumar Buyya, Hai Jin, Cluster Computing and 

 Applications, 18th September 2000 

 

 

 

 

 

 



Dept. of CSE, MSRIT  104 
 

Chapter 10 
 
Screenshots 
• Job Progress as seen on the terminal 

 

 
 

 

 

 
 



Dept. of CSE, MSRIT  105 
 

• Screenshot of a job in progress 
 

 
 

• Screenshot of a completed job 
 

 



Dept. of CSE, MSRIT  106 
 

• Screenshot of the graphical representation of the Map and Reduce  
 

 
 

• Screenshot of the HDFS 

 
• Screenshot of the output file generated 



Dept. of CSE, MSRIT  107 
 

 


	h1
	Bachelor of Engineering in Computer Science & Engineering
	Department of Computer Science & Engineering
	Abstract
	ACKNOWLEDGEMENTS
	Contents


	h2
	final report.pdf

